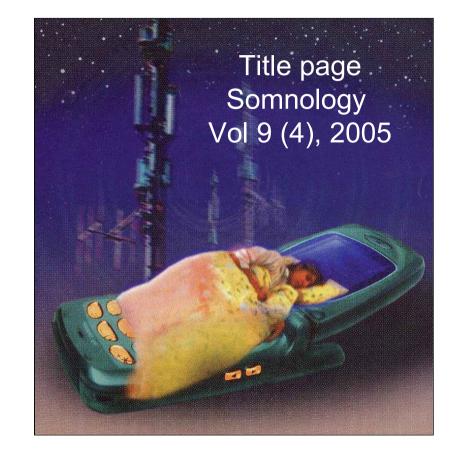


Studies of the effects of exposure to electromagnetic fields emitted from mobile phones on volunteers

Investigation of sleep quality in subjects living near a mobile base station – Experimental study on the evaluation of possible psychological and physiological effects under residential conditions


Heidi Danker-Hopfe and Hans Dorn

German Mobile Telecommunication Research Programme Munich, 12./13. December 2006

Overview

- Sleep basics
- Motivation to study sleep in the context of electromagnetic fields

- Laboratory study: mobile phones and sleep
- Field study: base stations and sleep

Field study: base stations and sleep

- History
- Background
- Design
- Status of the project

Charité – CBF project funded within the *DMF*

Title:	Investigation of sleep quality in subjects living near a mobile base station – Experimental study on the evaluation of possible psychological and physio- logical effects under residential conditions
Duration:	March 1st, 2006 – September 30th, 2007

Ein ostfriesisches Dorf schläft für die Wissenschaft

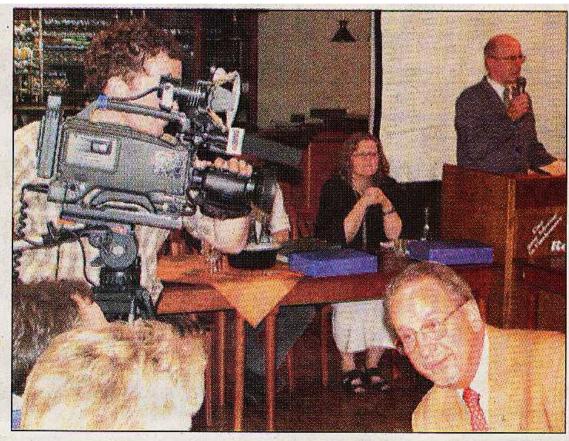
Pilotstudie untersucht Auswirkungen von Mobilfunkmasten

Feasibility study

Investigations of sleep quality in subjects living in the vicinity of base stations (funded by the Ministry of Social Affairs, Women, Family and Health of Lower Saxony)

Flachsmeer, November 10th to Dezember 7th, 2002

Participants: 47 men and 58 women (15 to 88 years)


UNIVERSITÄTSMEDIZIN BERLIN

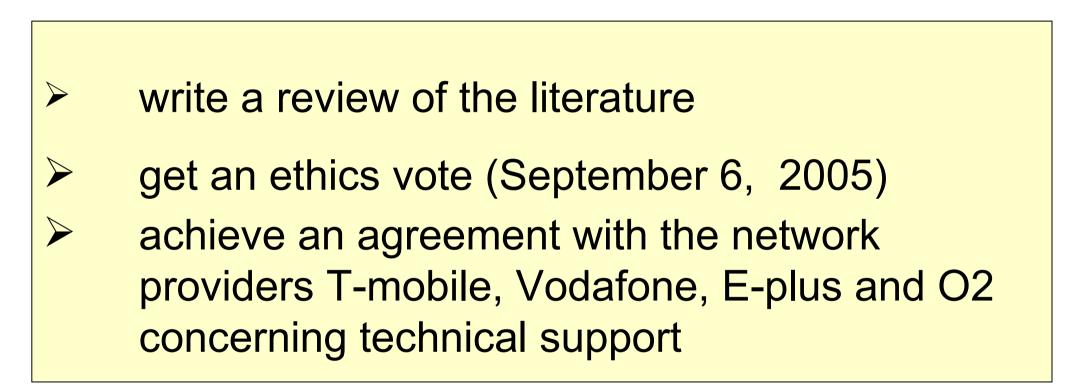
Presentation of results: June 19, 2003

Ein Dorf schläft für die Nation

■ Flachsmeer (nbg) Die Bürger der Westoverledinger Ortschaft Flachsmeer ebnen den Weg für eine bundesweite Studie zu möglichen Gesundheitsgefahren durch Handystrahlen.

105 Einwohner Flachsmeers hatten in einer weltweit einzigartigen Studie zwölf Nächte lang im Auftrag der Wissenschaft geschlafen. In dieser Machbarkeitsstudie wurde untersucht, ob Auswirkungen

Auch das NDR-Fernsehen interessierte sich für die Ergebnisse der Flachsmeerer Schlafstudie, die von Heidi Danker-Hopfe (Bildmitte) vorgestellt wurden. Foto: Pressebüro Nordwest Sonntagsreport June 22, 2003



Charité – CBF project funded within the *DMF*

Title:	Investigation of sleep quality in subjects living near a mobile base station – Experimental study on the evaluation of possible psychological and physio- logical effects under residential conditions
Duration:	June 15, 2005 – September 15, 2005 – <mark>pilot study</mark>

Aims of the pilot study

All aims were achieved — funding of the main study

Field study: base stations and sleep

History

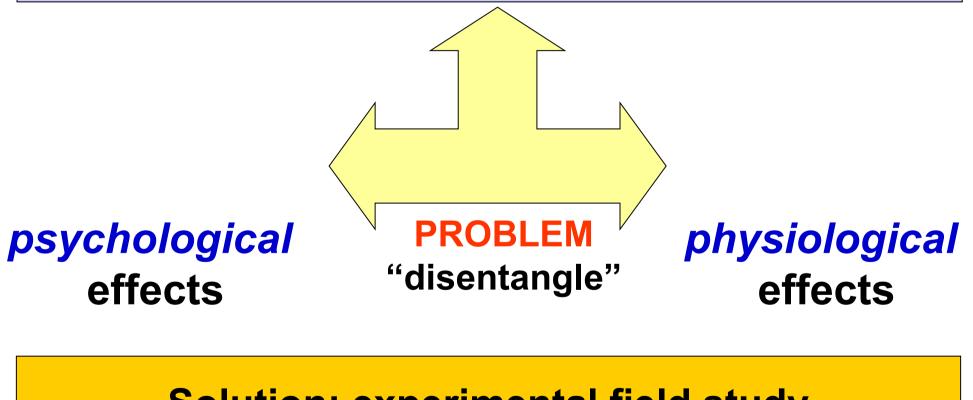
Background

- Design
- Status of the project

No further information

we refer to the presentation by Gabriele Berg

Field study - background



Field study: base stations and sleep

- History
- Background
- Design
- Status of the project

Field studies on sleep of people living in the vicinity of mobile phone base stations

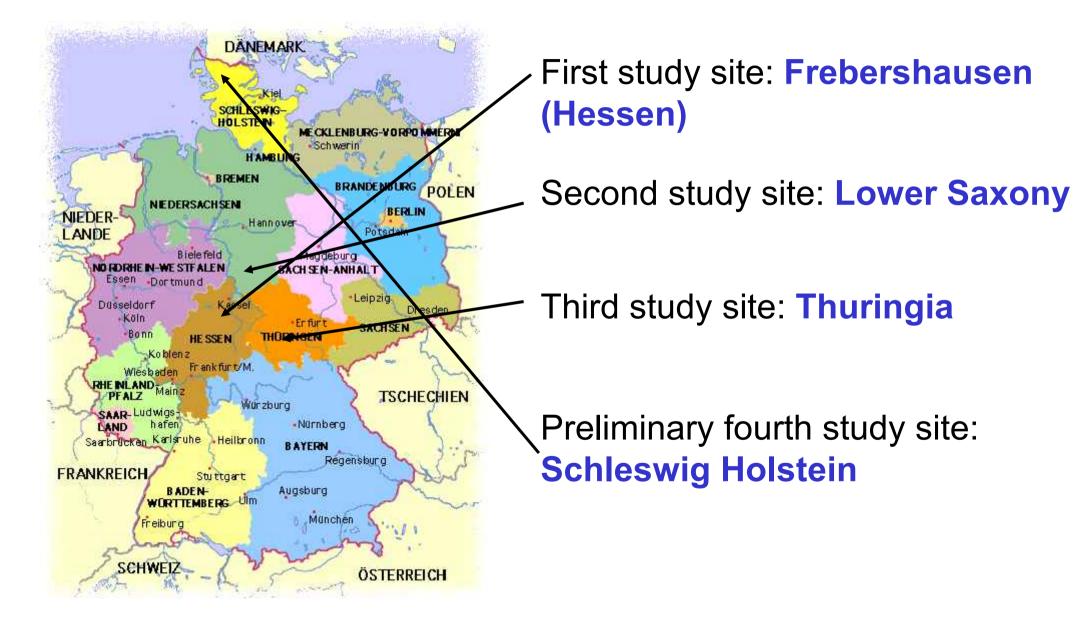
Solution: experimental field study

Field study - design

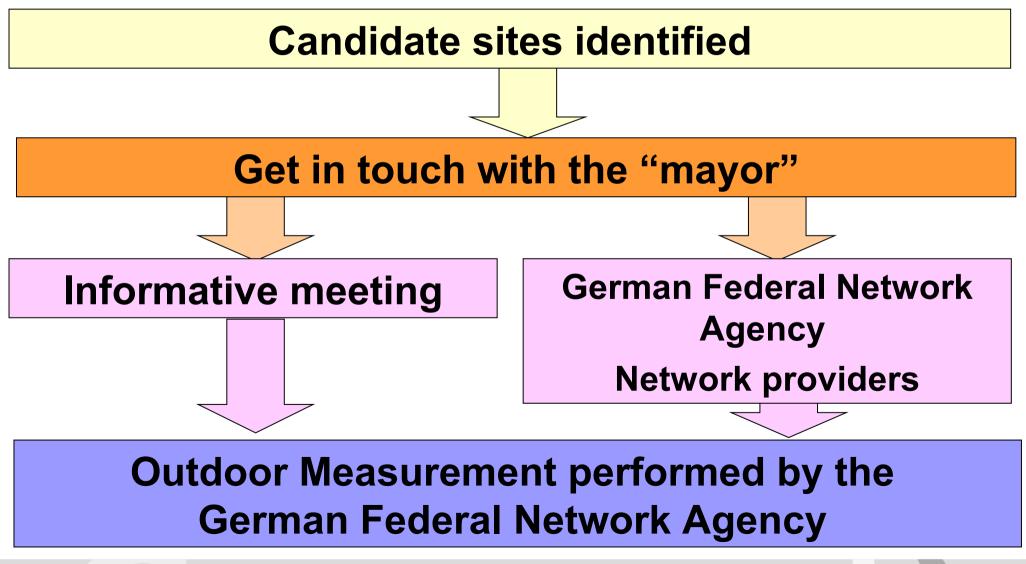
Selection of sites

- no mobile service available
- only weak fields from other RF-sources (TV etc.)
- no emotional EMF-discussion in the run-up to the study

Selection of subjects


- age > 17 years
- ability to give an informed consent
- Iving close (≤500 m) to a site suitable for placing the experimental base station

Selection of study sites: procedure


Search for sites: www.keinnetz.de, personal communication etc.

Selection of study sites: procedure

UNIVERSITÄTSMEDIZIN BERLIN

Outdoor measurement according to the standard: "Reg TP MV EMF 03, Ausgabe Februar 2003"

peak hold measurement while rotating antennas to include all directions for both vertical and horizontal polarizations

all signals above a threshold of 40dB below legal limits are registered or, if none present, the 2 strongest per measuring frequency range (can be at noise floor level)

UNIVERSITÄTSMEDIZIN BERLIN

						E _{eff}	E _{g eff}	Bedingungen E-Feld	Berechnung Bedingung 3 nach 1999/519/EG	H _{eff}	H _{g eff}	Bedingungen H-Feid	Berechnung Bedingung 4 nach 1999/519/EG
Zallen-Nr.	Messystem	Frequenz	Meßwert F _{PKmax}	Kombinierte Standard- unsicherheit	erweiterte Messun- sicherheit bel 95%	Effektiv- wert	Grenzwert für Effektiv- wert	Bed. 1*	Bed. 3*	Effektiv- wert	Grenzwert für Effektiv- wert	Bed. 2 *	Bed. 4*
Nr		MHz	dB(µV/m)	Faktor	dB	V/m	V/m	Faidor	Faktor	mA/m	mA/m	Fektor	Faidor
1	6	0,13	84,6	0,186	2,7	0,0232	87.0	0,0002664	0,0000000	0,061	5000.0	0,0000123	0,0000000
2	6	0,15	90,6	0,186	2,7	0,0462	87.0	0.0005315	0,0000000	0,123	4812,1	0,0000245	0,0000000
3	6	5,93	75,8	0,186	2,7	0,0084	35,7	0.0000967	0.0000001	0,022	123.1	0,0000045	0.0000000
4	6	6,1	73,3	0,186	2,7	0,0063	35,2	0,0000725	0,0000000	0,017	119,6	0,0000033	0,0000000
5	7	87,5	67,1	0,157	2,3	0,0030	27,5	0,0000000	0,0000000	0,008	73,0	0,0000000	0,0000000
6	7	91,03	68,1	0,157	2,3	0,0033	27.5	0,0000000	0,0000000	0,009	73,0	0,0000000	0,0000000
7	7	128,86	58,6	0,157	2,3	0,0011	27,5	0,0000000	0,0000000	0,003	73,0	0,0000000	0,0000000
8	7	132,72	45,4	0,157	2,3	0,0002	27.5	0,0000000	0,0000000	0,001	73,0	0,0000000	0,0000000
9	7	133,4	46,4	0,157	2,3	0,0003	27.5	0,0000000	0,0000000	0,001	73,0	0,0000000	0,0000000
10	9	1028	70,7	0,163	2,4	0,0045	44.1	0,0000000	0,0000000	0,012	118,6	0,0000000	0,0000000
11	9	1463	73,5	0,163	2,4	0,0062	52,6	0,0000000	0,0000000	0,017	141,5	0,0000000	0,0000000
12	9	1886	79,8	0,163	2,4	0,0129	59,7	0,0000000	0,0000000	0,034	160,7	0,0000000	0,0000000
13	9	1890	80,2	0,163	2,4	0,0135	59,8	0,0000000	0,0000001	0,036	160,9	0,0000000	0,0000000

Quelle: RegTP-Messung in Frebershausen

Selektive Messtechnik

Mess- system	Messgerätekombination	Bemerkungen
Nr	Тур	
1	FSU-8 mit Rahmen HFH2-Z2	Frequenz 9 kHz - 30 MHz
2	FSU-8 mit Bikonischer Breitbandantenne BBA 9106	Frequenz 30 kHz - 300 MHz
3	FSU-8 mit Bikonischer Breitbandantenne UBA9116	Frequenz 300 MHz - 1000 MHz
4	FSU-8 mit Logper VUSLP 9111	Frequenz 1000 MHz - 3000 MHz
5	FSU-8 mit LogPer. Breitbandantenne USLP 9142	Frequenz 1000 MHz -3000 MHz
6	ESPI mit Rahmen HFH2-Z2	Frequenz 9 kHz - 30 MHz
7	ESPI mit Bikonischer Breitbandantenne BBA 9106	Frequenz 30 kHz - 300 MHz
8	ESPI mit Bikonischer Breitbandantenne UBA9116	Frequenz 300 MHz - 1000 MHz
9	ESPI mit Logper VUSLP 9111	Frequenz 1000 MHz - 3000 MHz
10	ESPI mit LogPer. Breitbandantenne USLP 9142	Frequenz 1000 MHz -3000 MHz

Quelle: RegTP-Messung in Frebershausen

UNIVERSITÄTSMEDIZIN BERLIN

Summationsbedingungen:	Bedeutung der Formelzeichen		
Bed. 1: $\sum_{i=1Hz}^{1MHz} \frac{E_i}{E_{L,i}} + \sum_{i>1MHz}^{10MHz} \frac{E_i}{87} \le 1$ Bed. 2: $\sum_{j=1Hz}^{150kHz} \frac{H_j}{H_{L,j}} + \sum_{j>150kHz}^{10MHz} \frac{H_j}{5000} \le 1$ Bed. 3: $\sum_{i=100kHz}^{1MHz} \left(\frac{E_i}{87/\sqrt{f}} \right)^2 + \sum_{i>1MHz}^{300 \text{ GHz}} \left(\frac{E_i}{E_{L,i}} \right)^2 \le 1$ Bed. 4: $\sum_{j=100kHz}^{150kHz} \left(\frac{H_j}{730/f} \right)^2 + \sum_{j>150kHz}^{300 \text{ GHz}} \left(\frac{H_j}{H_{L,j}} \right)^2 \le 1$	 E_i: Elektrische Feldstärke bei der Frequenz i in V/m E_{Li}: Referenzwert (Grenzwert) für das elektrische Feld bei der Frequenz i in V/m H_i: Magnetische Feldstärke bei der Frequenz j in mA/m H_{Li}: Referenzwert (Grenzwert) für das magnetische Feld bei der Frequenz j in mA/m f: Frequenz in MHz 		
Spitzenwertfaktor: Spitzenwertfaktor: $\frac{E_s}{E_{gs}} \le 1$ bzw. $\frac{H_s}{H_{gs}} \le 1$	 E_s: Spitzeneffektivwert der elektrischen Feldstärke in V/m E_{gs}: Spitzenwert-Grenzwert E-Feld für gepulste Signale in V/m H_s: Spitzeneffektivwert der magnetischen Feldstärke in mA/m H_{gs}: Spitzenwert-Grenzwert H-Feld für gepulste Signale in mA/m 		

Quelle: RegTP-Messung in Frebershausen

Transport of the experimental base station to the study site

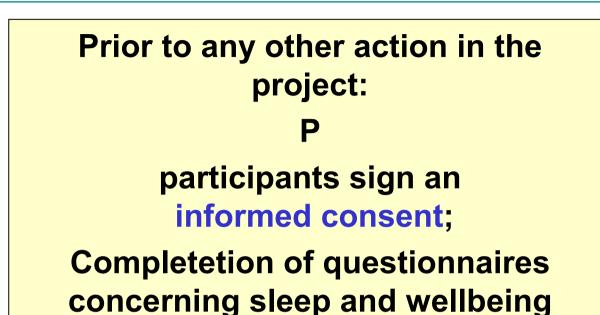
Characteristics:

Container, originally used for desaster recovery, containing GSM 900 and GSM 1800 base transceiver stations (BTS), a mast, cables, antennas and a power supply system

BTS deliver generic GSM signals using a test mode without net service -> not displayed on mobiles

UNIVERSITÄTSMEDIZIN BERLIN

Transport of the experimental base station to the study site


Characteristics *contd*: auxiliary signal generators and power amplifiers add 6/8 pulsed GSM signals

Sum signal simulates a base station transmitting near full capacity

Computer based double blind exposition control via RF relais for switching

LISST (Landecker Inventar zur Erfassung von Schlafstörungen)

- Pittsburgh Schlafqualitäts-Index (PSQI)
- Epworth Sleepiness Scale (ESS)
- Morning-Evening-Type assessment (MAB)
- Zung's Anxiety Scale and Depression Scale (SAS and SDS)
- Attitude towards mobile communication (based on the infas interview)
- Personality traits (NEO-FFI)

Outdoor measurement by the IMST GmbH

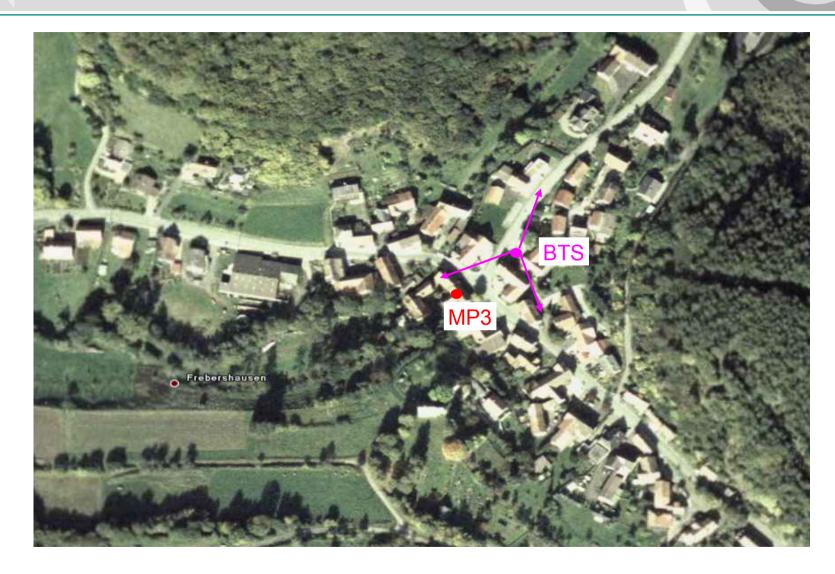


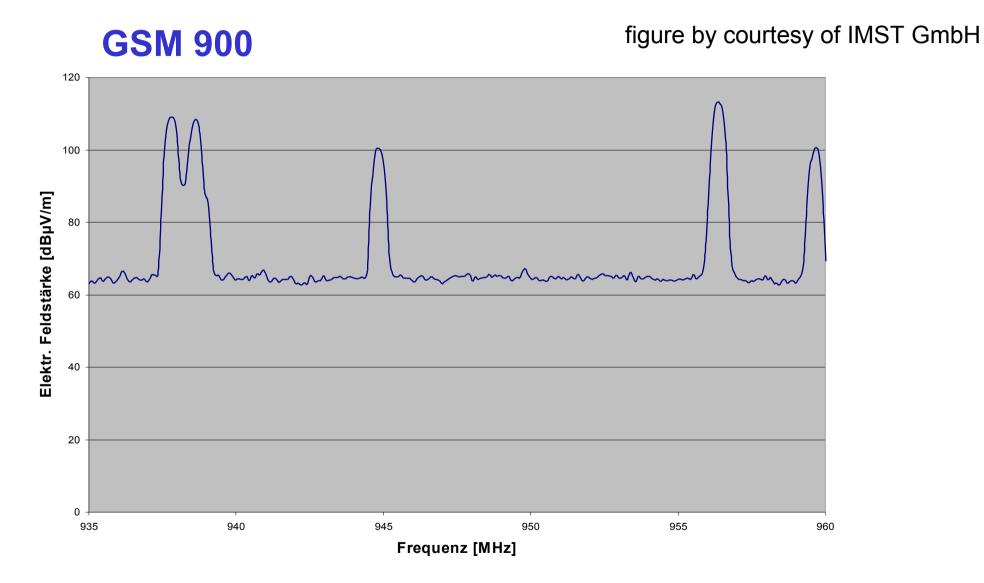
photo by courtesy of IMST GmbH

Location of measuring point 3 and antenna directions of the experimental base station

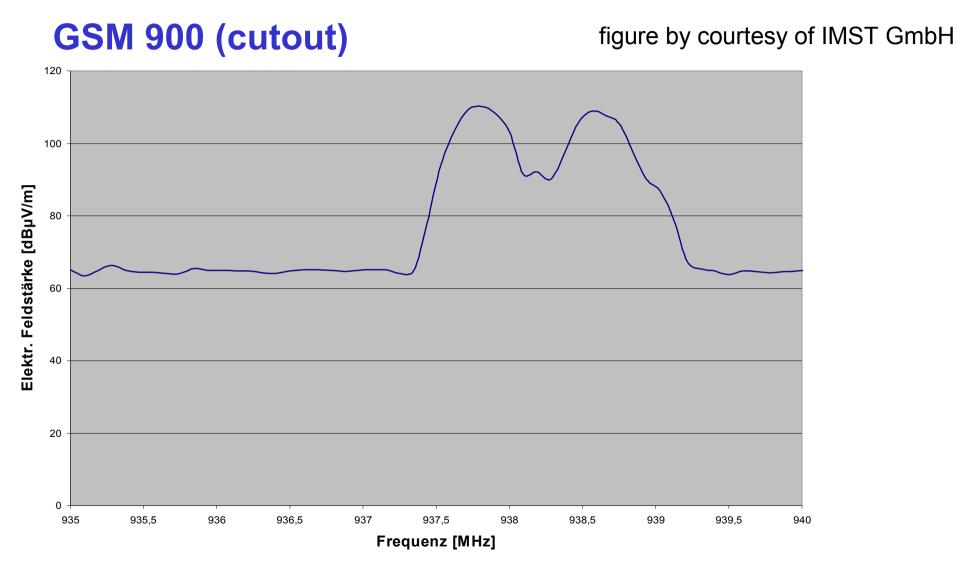
UNIVERSITÄTSMEDIZIN BERLIN

1 week

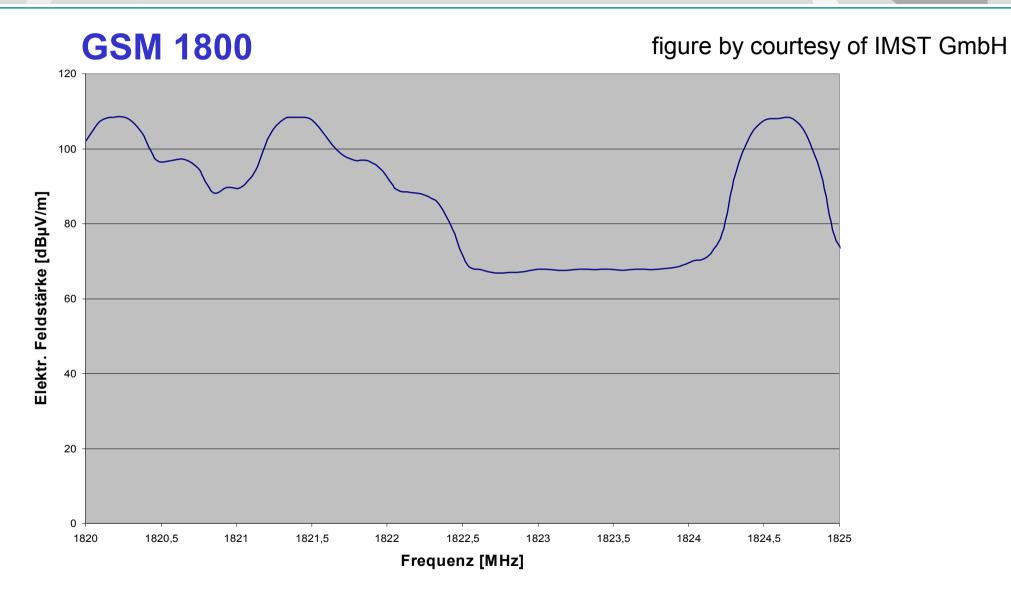
singular measurement of the signal at the pillow of each participant's bed


DECT phones will be replaced for the time of the study

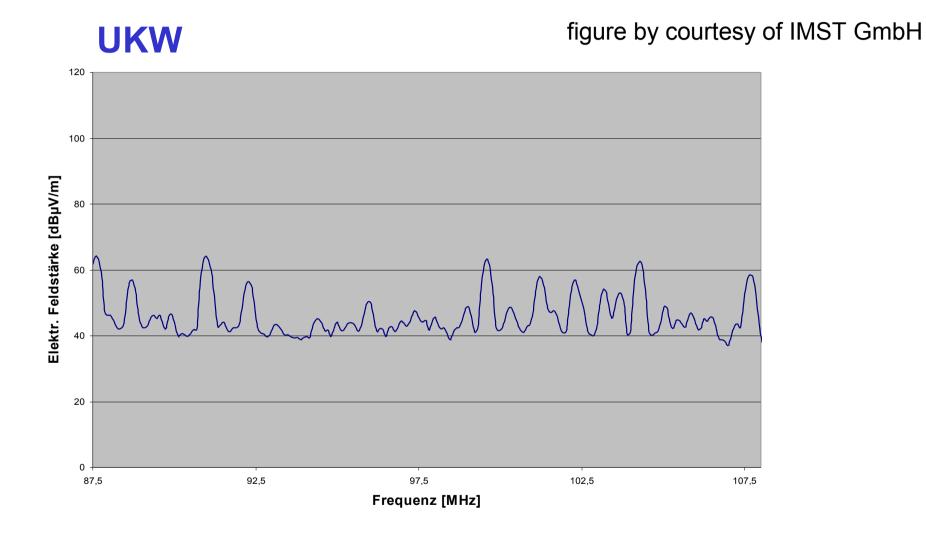
- both experimental ("test") and external background exposition are assessed
- frequency selective and isotropic methods are used (additionally code selective for UMTS)
- signals of the various transmitting services are measured individually
- to be able to detect background signals of field strengths 40dB below experimental exposition a multistep approach is taken – applying different methods depending from the test signal strength encountered



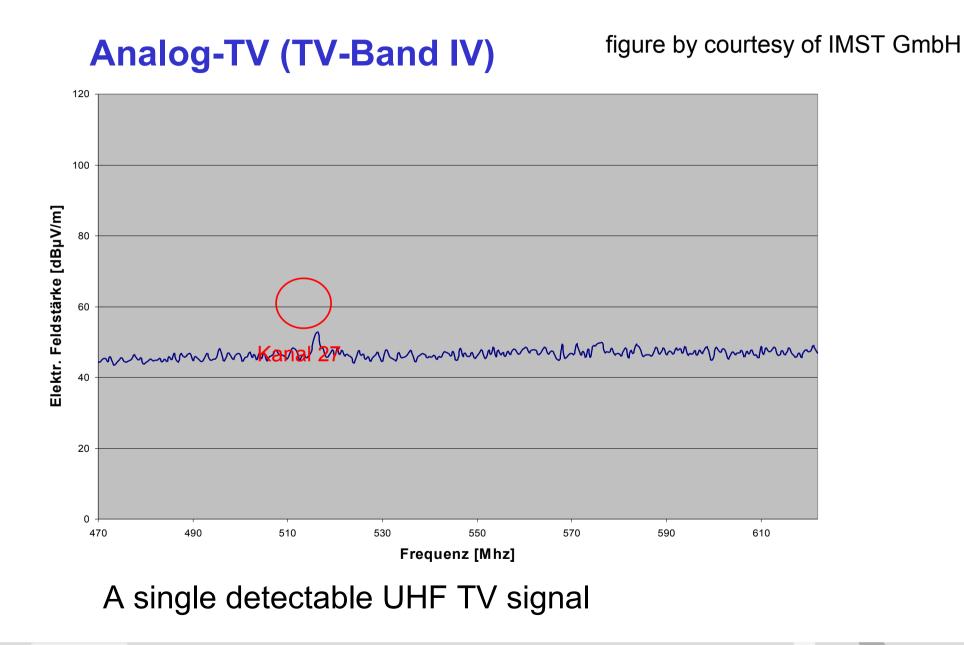
UNIVERSITÄTSMEDIZIN BERLIN


GSM 900 downlink: signals of the experimental base station

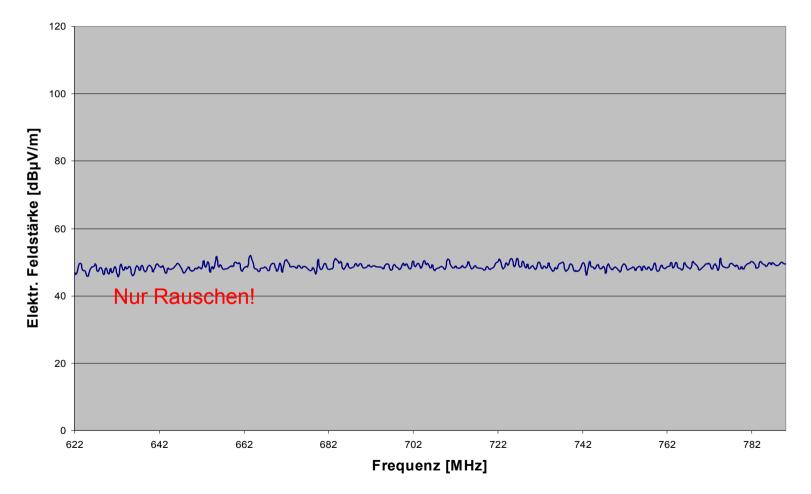
UNIVERSITÄTSMEDIZIN BERLIN


Signals of four channels below 940 MHz (seven GSM 900 downlink channels total)

UNIVERSITÄTSMEDIZIN BERLIN


GSM 1800 downlink: signals of the experimental base station

UNIVERSITÄTSMEDIZIN BERLIN


Signals of FM broadcast

UNIVERSITÄTSMEDIZIN BERLIN

UNIVERSITÄTSMEDIZIN BERLIN

Analog-TV (TV-Band V) figure by courtesy of IMST GmbH

No detectable signals in the second UHF TV frequency band

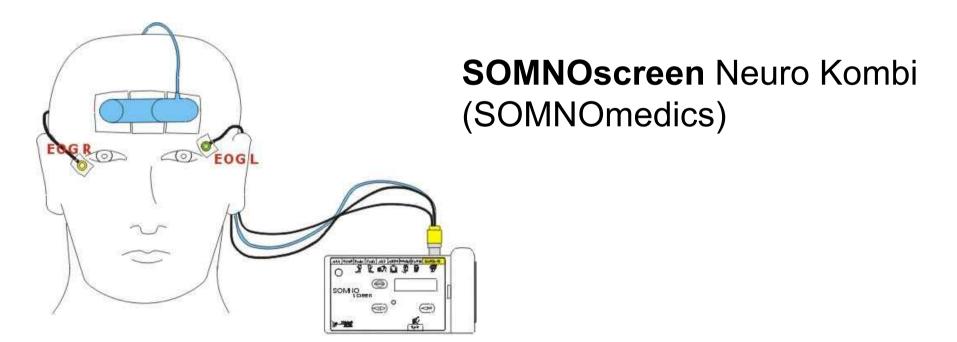
Collection of sleep related data: duration 2 weeks (12 nights)

no exposition during the day, randomized exposition (sham and verum) during the nights

subjective sleep quality

Morning- /evening protocols

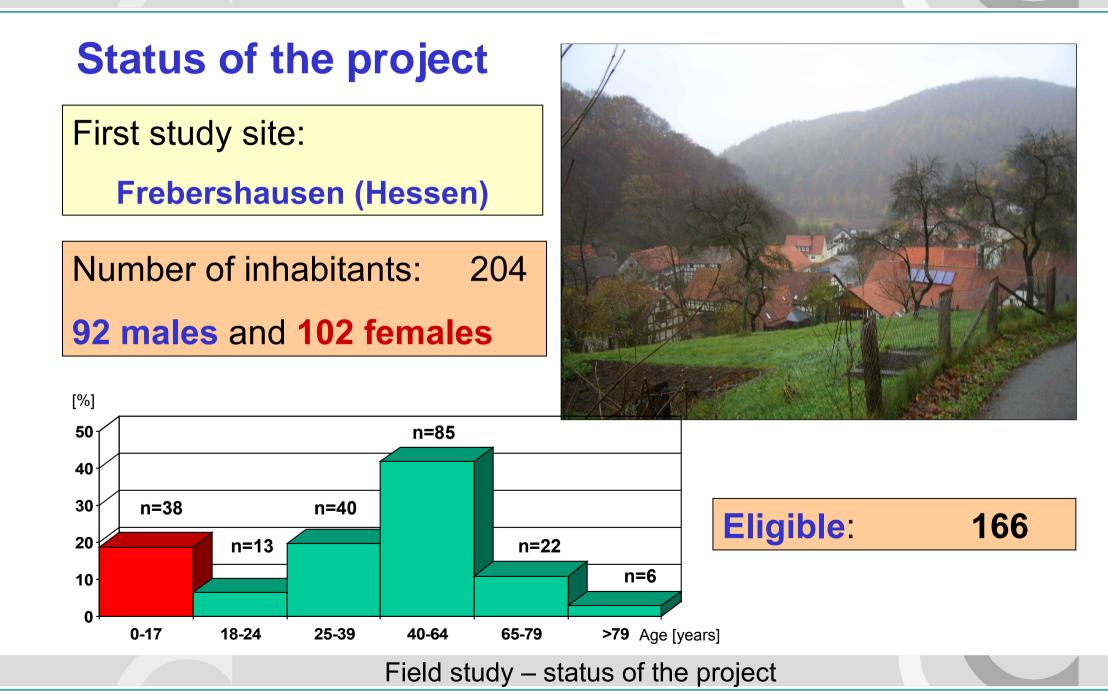
Recommended by the *German Society for Sleep Research and Sleep Medicine* (DGSM), supplemented by questions concerning problems with handling the device used to collect objective data objective sleep quality


Registration and automatic analysis of sleep EEG

Storage of the original frontally recorded bipolar EEG signal

objective sleep quality

Registration and automatic analysis of sleep EEG -Storage of the original frontally recorded bipolar EEG signal



Field study: base stations and sleep

- History
- Background
- Design
- Status of the project

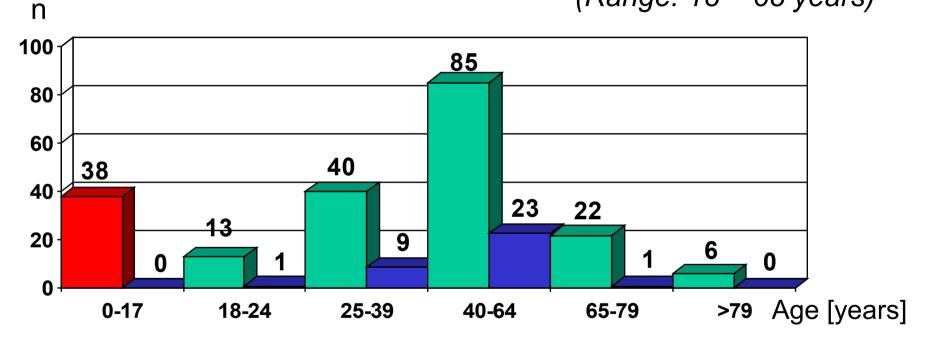
Status of the project

First study site:

Frebershausen (Hessen)

Data collection (12.11. - 2.12.2006)

n = 34 (20.5% of the eligible population) enrolled


Frebershausen

Field study – status of the project

Sample characteristics

Mean age of participants: 44.2 ± 11.8 years (Range: 18 – 68 years)

17 males: 50%

Field study – status of the project

Study completed

12 nights	20 subjects (58.8%)	
11 nights	7 subjects (20.6%)	
10 nights	3 subjects (8.8%)	
6 nights	1 subject (2.9%)	
4 nights	2 subjects (5.9%)	Drop out rate:
0 nights	1 subject (2.9%)	11.8 %

Field study – status of the project

UNIVERSITÄTSMEDIZIN BERLIN

Network providers T-Mobile Vodafone E-Plus O2

FGF

Gerd Friedrich, PhD

IMST GmbH, Kamp Lintfort

Achim Bahr, PhD Thomas Bolz, Dipl.-Ing Christian Bornkessel, Dr.-Ing. and his team Fachhochschule Deggendorf Matthias Wuschek, Prof. Dr.-Ing. and his team Federal Agency of Radiation Protection Blanka Pophof, PhD

Thank you for your attention

Charité - CBF

Ansgar Bach, Dipl. Chem. PhD Malek Bajbouj, MD PhD **Oliver Berndt**, Dipl. Phys. Johannes Boeckh, Dipl. Psych. Timur Cetin, Dipl. Biol. Martina Grosch, MTA-F Marie-Luise Hansen, MD Almut Heinken, Biol. Stud. Anita Peter, MD Michaela Noack, MTA-F Grit Renner, MTA-F Peter Schlattmann, MD statistician Andrea Schmidt, MTA Katrin Schulze, MTA-F Stefanie Voigtländer, мта-г