

Determination of exposure due to mobile phone base stations in epidemiological studies

H.-P. Neitzke, J. Osterhoff, K. Peklo & H. Voigt ECOLOG-Institute, Hannover

German Mobile Telecommunication Research Programme International Workshop on Final Results of Dosimetry Projects July 25./26. 2006

Content

- Inspection of the problem
- Approaches for exposure assessment
- Measurement of RF-EMF in flats
 - Method
 - Results
- Exposure model
 - Basic principles
 - Input data
 - Test of validity
- Conclusions

Background

- Epidemiological cross sectional study to test the hypothesis that the electromagnetic fields of mobile phone base stations (MobB-EMF) cause medical disorders for people living in the vicinity of the antennas and that there are people especially sensitive to these fields
- 30,000 participants, randomly selected from the German population

Task

 Develop a method to classify the electromagnetic exposure due to mobile phone base stations

MobB-EMF: RF immissions due to mobile phone base stations

Emission

Technical specification

- Propagation
- Reflection
- Scattering
- Diffraction
- Refraction

Immission / Exposure

- Relevant exposure criteria
- Screening

Requirements

Requirements due to the concept of the epidemiological study

- Investigation of medical disorders (headache, sleep disturbances,)
 Determine actual exposures (no exposure history!)
- Investigation of frequent symptoms
 Determine exposures in a large study group (many flats)
- Hypothesis: A continuous exposure for several hours has a stronger effect than varying exposure conditions. (People are possibly very sensitive during the nighttime.)

➔ Determine immissions in sleeping rooms

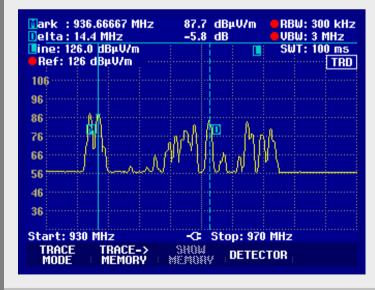
- Hypothesis: The risk for medical disorders increases with increasing average MobB-EMF exposure
 - → Determine time and space averages of the MobB-EMF immissions

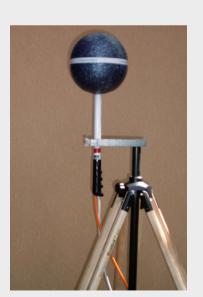
Determination of MobB-EMF in flats

- Measurements (stat. equipment, pers. exposimeter) requ.: equipment, field service personel, access to flats
 - +: real immissions
 - : time and effort
- ,Exact' calculation: field theoretic solution of Maxwell equations with all boundary conditions requ.: detailed technical and environmental data
 - +: real immissions
 - : applicable only in simple cases, input data not available
- Approximate calculation: ray optical method requ.: detailed technical and environmental data
 - +: immissions including effects due to reflection (diffraction))
 - : only approximate immissions, input data not available, time and effort
- Approximate calculation: typical technical data, free space propagation, empirically determined transmission factors requ.: technical data, measurement of transmission factors
 - +: reduced data input, model applicable in other studies
 - : only approximate² immissions

?

7

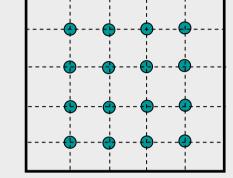

Measurements


Goals of the measurements in this study:

- develop and test a method to measure MobB-EMF in flats
- get information about the RF immissions at indoor locations (true immissions! not maximum possible immissions!)
- find out, which technical and environmental parameters mainly determine MobB-EMF immissions in the vicinity of mobile phone base stations
- determine MobB-EMF propagation parameters for different types of propagation areas
- test the validity of a numerical exposure assessment model

Measurements: Methods

- Spektrum analyser R&S FSH 3, Software RFEX
- Isotropic measuring probe R&S TS EMF (80 MHz to 2.5 GHz)
- Directional antenna R&S HE 200



Measurements: Methods

- Point grid method
- Spatial averaging
- Long time measurements
- Standard measuring packets:
- FM Radio
- TV VHF
- TV UHF
- GSM 900 downlink
- (GSM 900 uplink)
- GSM 1800 downlink
- (GSM 1800 uplink)
- DECT
- (UMTS downlink)

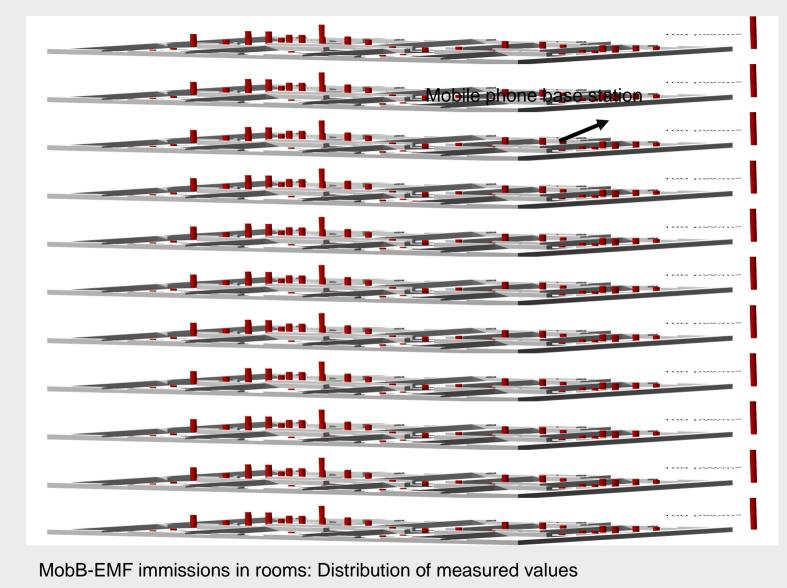
large rooms

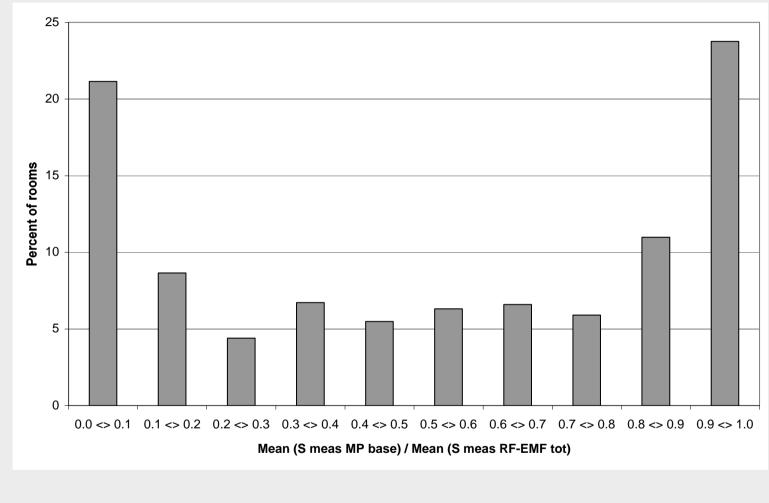
1.0 m x 1.0 m - grid height 1.0 m

0.1 m x 0.1 m - grid heigth: 0.75 m, 1.5 m

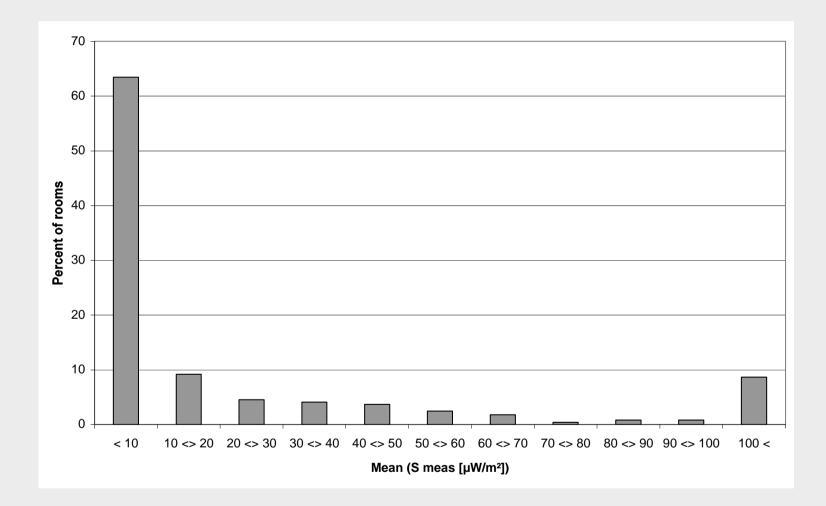
Minimum distance to walls and objects: 0.5 m

smaller rooms

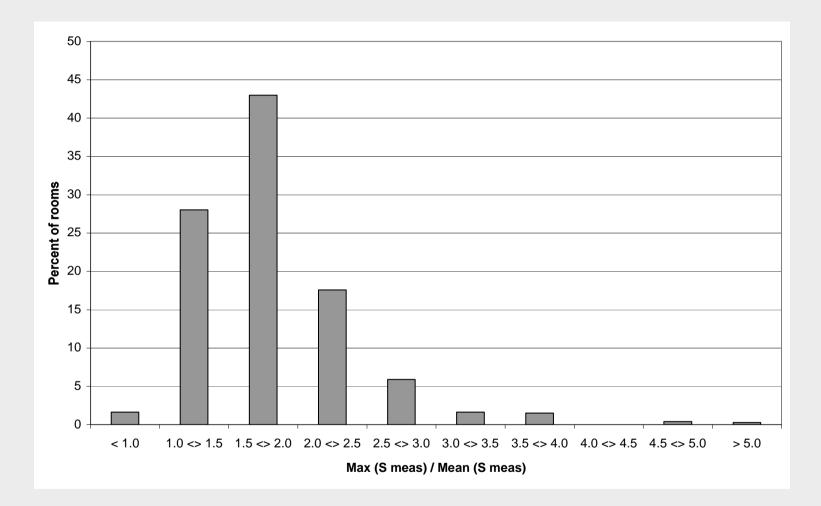

5 point - grid

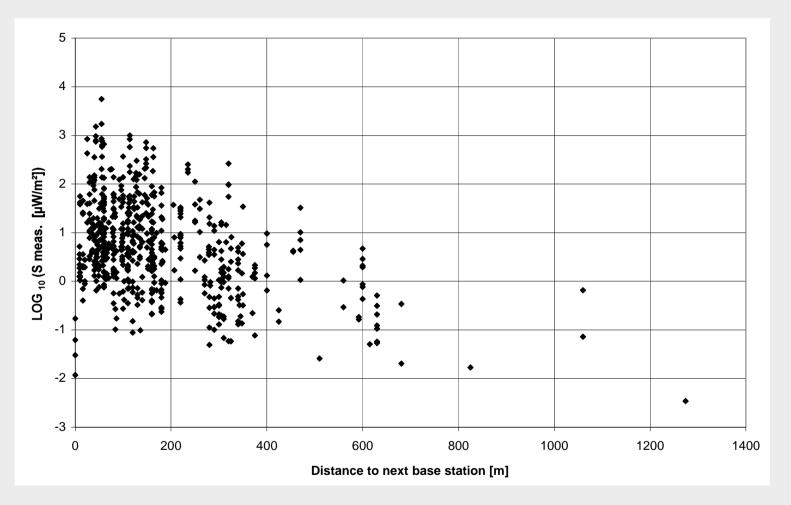

Measurements: Methods

Measurements of RF-EMF immissions

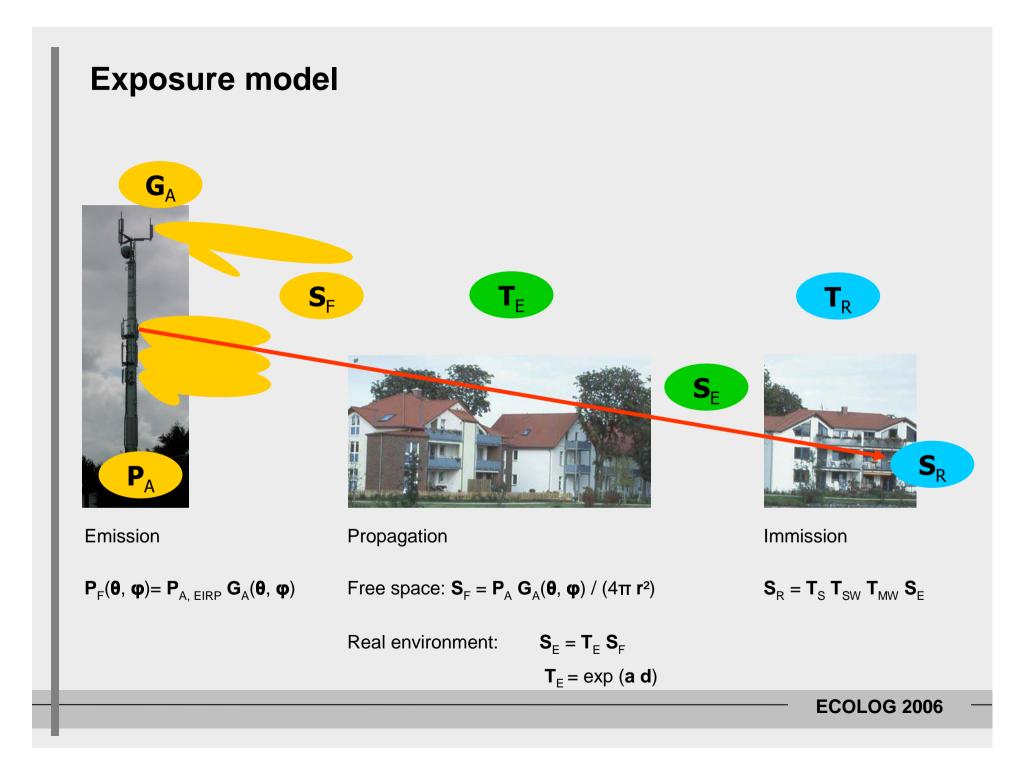

- in 1100 rooms

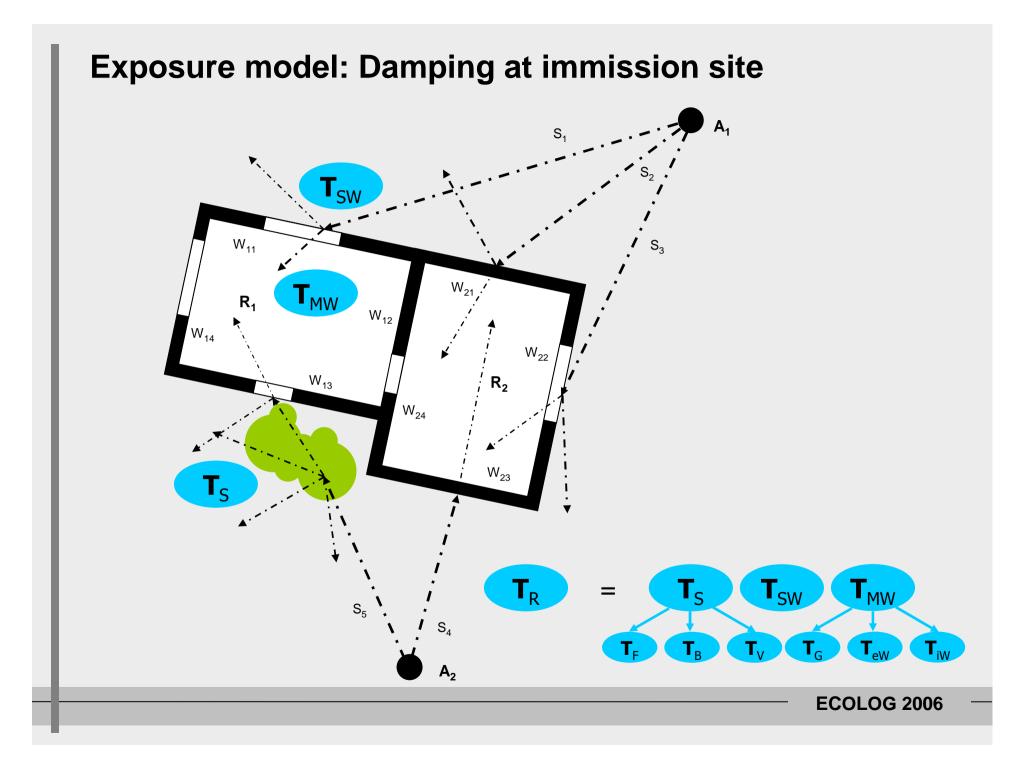
- at 120 outdoor-locations (balcony, patio, garden)
- additionally in the vicinity of 60 mobile phone base stations
- in four types of residential areas
 - closed high-density areas
 - high-density areas with courtyards and/or small greens
 - low-density areas with houses with more than three floors
 - low-density areas with houses with up to three floors
- ➡ in different magnitudes of communities (1000 to 1,000,000 inhabitants)
 - for different types of terrain (flat, hilly)
 - for different constellations of RF-transmitters
 - GSM 900- and GSM 1800-base stations (UMTS: limited validity)
 - one to eleven base station sites within a distance of 500 m
 - base station sites with one to 24 antennas
 - radio- and TV-broadcasting stations at a distance from 200 m to 20 km
 - flats with and without cordless telephones
 - flats far from and near to places with high use of mobile phones (urban places, shopping centres, railway stations)




MobB-EMF immissions in rooms: Contribution of MobB-EMF to total RF-EMF

MobB-EMF immissions in rooms: Room averages of measured power densities


MobB-EMF immissions in rooms: Maximum to mean value of measured power density



MobB-EMF immissions in rooms: Room averages of measured power densities as a function of the horizontal distance to the next mobile phone base station

⇒

- measurements in flats at distances from the next mobile phone base station site not exceeding 1000 m → measured immissions not representative for the exposure of the population in Germany
- only in a few cases measured power densities above 0.1 % of maximum allowable values in Germany (ICNIRP recommendations)
- sum of the mobile phone immissions (GSM 900, GSM 1800, UMTS) below 10 $\mu W/m^2$ in more than 60 % of the rooms, only in about 9 % of rooms averages of more than 100 $\mu W/m^2$
- contributions from mobile phone base stations to the total RF-immissions dominate, but occasionally other sources may contribute substantially (DECT-phones)
- 24 h-variations of the mobile phone immissions caused by additional traffic channels normally below 20 %.
- immissions strongly dependend on the spatial orientation of windows with respect to the direction from the room to the base station
- strong damping of RF-EMF due to buildings and vegetation in the LOS, exterior and interior walls
- immissions at places with free sight on a mobile phone antenna strongly dependend on the angle between the LOS and the main radiation direction of the antenna
- distance only a very bad indicator for exposure (it can at best be used to identify flats that are probably less exposed)

Exposure model: Input data

Input data	Sources	Qual. this study / Epi study
Location of base stations	Maps / Geo coordinates	A / B
Type of mobile phone nets	Site declaration	A/A
Mounting heights of antennas	Site declaration	A/A
Orientation of antennas	Site declaration	A/A
Radiated Power	Typical values (net, type of area)	B/B
Radiation characteristics of antennas	Typical values (net, type of area)	B/B
Downtilts of antennas	Typical values (net, type of area)	B/B
Type of propagation area	Knowledge of place / Epi Questionnaire	B/C
Transmission coefficient: Environment	Measurement	B/B
Location of flat/room	Maps / Geo coordinates	A/B
Height of room/flat above ground	Knowledge of place / Epi Questionnaire	A/B
Orientation of windows	Knowledge of place / Epi Questionnaire	A/B
Sight conditions in front of windows	Knowledge of place / Epi Questionnaire	A/B
Transmission factor: Visibility	Measurement	B/B
Transmission factor: Wall surface	Reflection model, Data from literature	B/B
Transmission factor: Wall substance	Absorption model, Data from literature	C / C

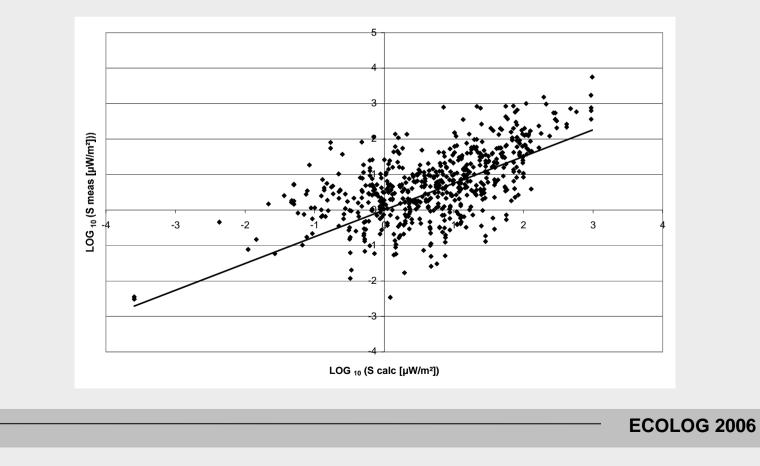
Exposure model: Technical input data

	low-density areas with houses with up to three floors	low-density areas with houses with more than three floors	high-density areas with courtyards and/or small greens	closed high- density areas
EIRP [W]				
GSM 900	165	205	285	365
GSM 1800	165	330	460	460
Downtilt [^e]				
GSM 900	-3.5	-6.0	-3.5	-6.0
GSM 1800	-1.0	-2.5	-3.0	-6.0
Antenna charact.	horizontal		vertical	
GSM 900	$G_R = 0,005 + 0,495 \cos \theta$	s(\phi/2)^{14} + 0.5 cos(\phi/2)^6	$G_{R} = 0,002 + 0,984 \cos(\theta/2)^{850} + 0,014 \cos(\theta/2)^{8}$	
GSM 1800	$G_{R} = 0,005 + 0,595 \cos \theta$	$5(\phi/2)^{20} + 0,4 \cos(\phi/2)^6$	$G_{R} = 0,001 + 0,989 \cos(\theta/2)^{1800} + 0,01 \cos(\theta/2)^{8}$	

Exposure model: Transmission factor input data

Transmission factors	ext. wall with window	ext. wall without window	int. wall	
Reflection at surface T _{sw} (ε _r)				
GSM 900	$\epsilon_r = 5.0$	$\epsilon_r = 5.0$	-	
GSM 1800	$\varepsilon_r = 5.0$	$\epsilon_r = 5.0$	-	
Absorption in material T _{MW}				
GSM 900	0.2	0.02	0.003	
GSM 1800	0.1	0.01	0.002	
Sight T _s	free	buildings, walls	vegetation	
GSM 900	1.0	0.5	0.4	
GSM 1800	1.0	0.2	0.4	
Environment T _E = exp (a d)	low-density areas with houses with up to three floors	low-density areas with houses with more than three floors	high-density areas with courtyards and/or small greens	closed high- density areas
GSM 900	a = 0	a = 0	a = -0.0003	a = -0.0025
GSM 1800	a = 0	a = 0	a = -0.0003	a = -0,006

Methods to test the agreement of calculated and measured immissions

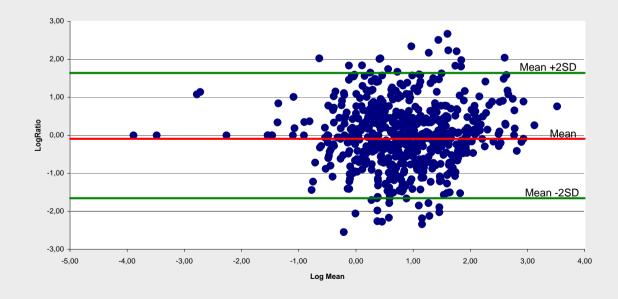

- Correlation Analysis
- Bland-Altman-Plot
- κ-Test
- Analysis of Sensitivity and Specifity

Correlation-Analysis

statistical method to test the correlation of two sets of data

Result

Correlation coefficient: 0.64 (0.48 – 0.86) @ acceptable to good correlation



Bland-Altman-Plot

statistical method to compare two measurements techniques; in this graphical method the differences (or alternatively the ratios) between the two techniques are plotted against the averages of the two techniques

Result

r no systematic error

к-Test

Kappa is a measure of interobserver or methodical agreement

- $\kappa = 1$: perfect agreement
- $\kappa > 0.6$: very good agreement
- $\kappa > 0.5$: good agreement
- $\kappa = -1$: perfect disagreement

Result

$\kappa = 0.52 (0.41 - 0.68)$ race acceptable to very good agreement

K-Test		t Test 1			
		+	-		(a + d)/N = [(a + c)*(a+b) + (b + d)*(c+d)]/I
Test 2	+	а	b	a+b	$K = \frac{(a+d)/N - [(a+c)^*(a+b) + (b+d)^*(c+d)] / I}{1 - ([(a+c)^*(a+b) + (b+d)^*(c+d)] / N^2}$
	-	с	d	c + d	
		a + c	b + d	N	

Analysis of Sensitivity and Specifity

Sensitivity ST: ratio of the number of all exposed subjects correctly identified to the number of all exposed subjects

Specifity SP: ratio of the number of all non-exposed subjects with correct negative exposure prognosis to the number of all non-exposed subjects

Result

ST = 0.56 (0.43 - 0.76) $rac{1}{2}$ low to high sensitivity

SP = 0.93 (0.89 – 0.97) ***** high specifity

In an epidemiological study misclassification leads to an underestimation of the observed risk!

Example:			
Assumption:	30,000 participants in	study	
	exposed cases: 2000		non-exposed cases: 1000
	exposed controls: 13,	500	non-exposed controls: 13,500
Correct risk	C	DR = 2.0	(CI: 1.9 – 2.2)
Observed risk due	to misclassification: C	DR = 1.5	(CI: 1.2 – 1.7)

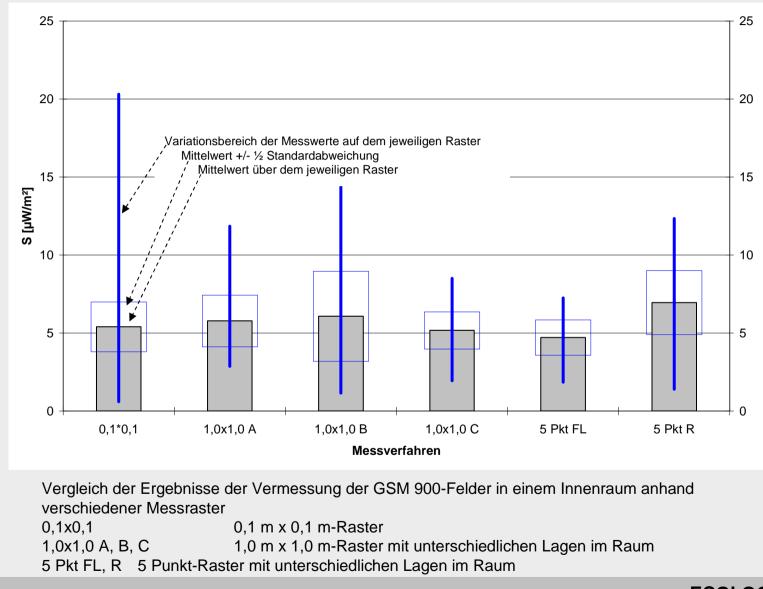
Exposure Model: Conclusions

Agreement between the calculated and the measured immissions

Good agreement for

- low-density areas with houses with up to three floors

Acceptable agreement for


- low-density areas with houses with more than three floors
- high-density areas with courtyards and/or small greens
- closed high-density areas

Model used for the estimation of exposure in an epidemiological cross sectional study

- exposure classification of 30,000 participants
- preselection of 3,000 propably higher/lower exposed subjects
- independent verification of exposure classification by point measurements

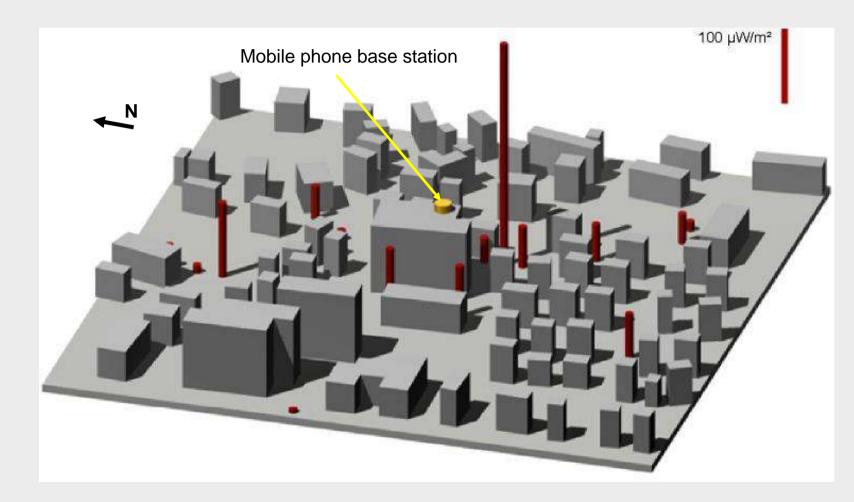
Acknowledgment

- Federal Radiation Protection Office, Dirk Geschwentner et al.
- QUEBEB, Dr. Gabriele Berg et al.
- IMST, Dr. Christian Bornkessel
- Lower Saxony Office of Ecology, Dr. Hauke Brüggemeyer

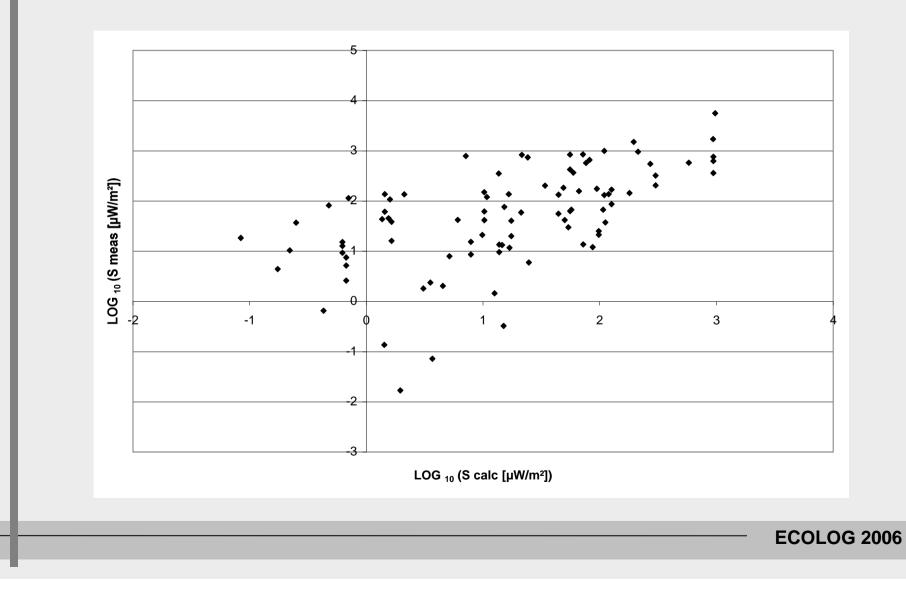
Approach

- a) measure high frequency immissions in flats in the vicinity of mobile phone base stations
- b) determine typical emission patterns and radiation power (informations from the mobile phone industry)
- c) extract information about actual base stations from the site declarations (German Regulatory Authority for Telecommunications and Posts)
- d) calculate the emissions of mobile phone antennas under the condition of free space propagation (b & c)
- e) compare measured with calculated immissions (a & d)
- f) determined transmission factors for the propagation of electromagnetic waves in different types of residential areas and visibility conditions in front of windows
- g) calculate transmission factors for radio waves entering rooms through walls and windows (kind of walls, spatial orientation especially for walls with windows)

Aim


Develop a **method to estimate electromagnetic immissions due to mobile phone base stations in flats** on the basis of

- geographical informations about all base station sites within a distance of 500 m to the flat to be tested


- technical data for all base station antennas at these sites (number, mounting height and orientation, typical emission patterns and radiated power of mobile phone base station antennas)

- informations about location of the flat (geographical coordinates, height)

- information relevant for the propagation of electromagnetic waves from the point of emission to the point of immission

MobB-EMF immissions at outdoor locations in the vicinity of a mobile phone base station

