Exposure Setups for In Vitro RF Experiments

Niels Kuster IT'IS Foundation, ETH Zurich, Switzerland

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

In Vitro Laboratory Studies with IT'IS Participation

In Vitro Studies

- **Partner:** Institut für klinische Chemie und Pathobiochemie, Universitätsklinikum Benjamin Franklin, Berlin, Germany
- **Objectives**: Investigation of possible genotoxic effects and effects on gene expression due to GSM exposure in the human HL60 cell system
- Partner: Klinische Abteilung Arbeitsmedizin, Universitätsklinik Innere Medizin IV, Wien, Austria
- **Objectives**: Investigation of possible direct and indirect genotoxic effects due to ELF magnetic field exposure in several human cell lines
- Partner: İnstitut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, Germany
- **Objectives**: Analysis of molecular and cellular responses of embryonic stem cells to RF and ELF electromagnetic field exposure
- Partner: Investigacion Bioelectromagnetismo, Hospital Ramon y Cajal, Madrid, Spain
- **Objectives:** Investigation of the influence of RF EMF on differentiation and gene expression of pheochromocytoma PC12 cells and of primary cultures from nucleous striatum of rat foetuses
- **Partner:** Laboratory of Radiobiology, STUK -Radiation and Nuclear Safety Authority, Helsinki, Finland
- **Objectives:** Effects of RF EMF on (1) pattern of expression of genes and their protein products and (2) cell cycle kinetics
- Partner: Institut für Biophysik, Universität Hannover, Germany
- **Objectives:** Investigation of cellular responses to ELF EMF of various cell systems on different levels of signal transduction, gene expression and protein targeting
- Partner: Department of Physics, University of

Bologna, Italy

- **Objectives**: Investigation of possible effects of RF EMF on the human immune system dependent on the age of subjects
- **Partner:** Laboratoire PIOM, Ecole Nationale Superieure de Chimie et de Physique, Cedex, France
- **Objectives**: Determination whether RF EMF are able to act as direct or indirect carcinogens using the standardised rat tracheal epithelial cells transformation assay
- Partner: Department of Pharmacology, University of Milan, Italy
- **Objectives**: Investigation of possible ELF EMF effects on the development, composition and function of neuronal nicotinic receptors in human neuronal cells
- **Partner:** Laboratoire PIOM, Ecole Nationale Superieure de Chimie et de Physique, Cedex, France
- **Objectives:** Effects on activation of ODC activity after RF exposure at 1800 and 900 MHz
- Partner: Department of Environmental Sciences, University of Kuoppio, Finland
- **Objectives:** Replication study of the effects on activation of ODC activity after RF exposure at 835 MHz
- **Partner**: Ente per le tecnologie, l'Energia e l'Ambiente, Department of Environment, Rome, Italy
- **Objectives:** Replication study of genotoxic effects of RF EMF on lymphocytes at 900 and 1800 MHz
- **Partner**: National Radiological Protection Board, Oxfordshire, UK
- **Objectives:** Replication study of genotoxic effects of RF EMF on lymphocytes at 900 MHz
- **Partner:** Institute for Electromagnetic Sensing of the Environment, Italian National Research Council Naples, Italy

- **Objectives:** Replication study of genotoxic effects due to ELF magnetic field exposure in human diploid fibroblasts
- **Partner:** Institute for Molecular Cancer Research, University of Zurich, Switzerland
- **Objectives**: Replication study of genotoxic effects due to ELF magnetic field exposure in human diploid fibroblasts
- Partner: Institut für Krebsforschung Universität Wien, Austria
- Objectives: Investigation of possible effects of GSM & UMTS exposure on protein function
- Partner: Klinische Abteilung Arbeitsmedizin, Universitätsklinik Innere Medizin IV, Wien, Austria
- **Objectives:** Investigation of possible direct and indirect genotoxic effects of GSM and UMTS exposure in several human cell lines
- Partner: Forschungszentrum Seibersdorf, Umwelt & Lebenswissenschaften, Toxikologie, Austria
- **Objectives:** Investigation of possible effects of GSM and UMTS exposure on cells of the human immune system
- Partner: Institute for Science & Technology in Medicine, Keele University, Stoke-on-Trent, UK
- **Objectives:** Examination of possible effects of RF emissions from cellular telephones on biogenic magnetite in living cells (magnetotactic bacteria and cell cultures)
- Partner: Institute of Cell Biology and Biosystems Technology, University of Rostock, Germany
- **Objectives:** Examination of possible effects of RF EMF on cell activation processes in human cell systems

Contents

- Requirements
- Solutions
- sXc1800XL8
- Conclusions

Requirements

- (different) exposures + shame at exactly the same conditions except the induced RF
- minimal deviation from a standard biological protocol (flask/petri dish, medium, environment, etc.)
- stable RF carrier (frequency, Pavg, low noise)
- flexible modulation (enable most complex schemes)
- well defined and uniformly induced E- and H-fields (at cell culture)
- well defined environmental conditions
- fully characterized sources of artifacts (e.g., temperature load, vibration, EMC, EMI, etc.)
- all environmental and technical parameters continuously monitored
- uncertainty analysis

UMTS TPC Test Signal

© Foundation for Research on Information Technologies in Society

Spectral Content

HF spectrum

ELF envelope spectrum

Consequence

 (almost) each biological endpoint requires a specific exposure setup

Current

- sXc900 (petri 35mm, monolayer, suspension)
- sXc1800 (petri 35mm, monolayer, suspension)
- sXc1950 (petri 35mm, monolayer, suspension)
- sXcTEM (900MHz, T45 flasks, suspension)
- wirepatch (900MHz, petri 35mm, suspension)

Mechanical Design

OPTIMIZED WAVEGUIDE SETUPS

sXc In Vitro Exposure Systems

Installed Setup

Mechanical Design: Dish Holder Suspension

Signal Generation

© Foundation for Research on Information Technologies in Society

sXc User Software: Signal Choice

periment				1
Description: Here you d	can enter a clear c	lescription of the experiment		
Petri dishes	1	Signal		3
T25 Flask suspension		DAMPS Basic	•	
Medium				
Medium without HEPI	ES 💌			
Amount	5 [ml]			
Evoceure duration	1			
Exposure duration	000 ()			
Duration on cycle	300 [8]	SAR average	1 [mW/g] SD: 3	0.9 [%]
Duration on cycle	300 [s]	SAH average SAR slot average	1 [mW/g] SD: 3 3.05 [mW/g]	0.9 [%]
Duration on cycle Duration off cycle Total duration	300 [s] 10 [s] 100 [s]	SAR average SAR slot average Temperature rise	3.05 [mW/g] SD: 3 3.05 [mW/g] 0.0185 [°C]	0.9 [%]

sXc User Software: File Structure

🗁 TEM					
File Edit View Favorites Tools	Help				
🕝 Back 🔹 🕥 👻 🏂 🔎 Sea	rch 🌔 Folders 🛛 🎹 🕶				
Address C:\Exposure Setups{TEM\					💌 🔁 Go
	Name 🔺	Size	Туре	Date Modified	
File and Folder Tasks *	DATA		File Folder	04.03.2003 11:46	
对 Make a new folder	ConfigCrawford Cell.dat	4 KB	DAT File	04.03.2003 11:50	
Web	TEM-v2.exe	592 KB	Application	21.02.2003 12:31	
Share this folder					
Other Places 🕆					
🛅 Perform B					
My Documents					
🛅 Shared Documents					
😼 My Computer					
🧐 My Network Places					
Details ¥					

Quality Control & Data Security

- Recording of entire experiment history (10s intervals)
- Data security
 - files are read-only
 - binary mode
 - data are faked and encoded using a safe RC4 algorithm
 - data files are stored at 2 different physical locations
- Self-detection of malfunctions (tracing & handling of ~ 60 errors)
- Complete analysis of data stream at IT'IS in case of malfunction
- Provision of evaluation report to the lab by email

Data Analysis

iris sXc 1800 Experiment Parameters iris

Description	Value	Dimension
Start Date and Time	2002-05-21-12:50:08	
Stop Date and Time	2002-05-23-08:51:15	
Expected Average SAR	2	[mW/g]
Modulation	ON	[]
Frame Structure	ON	[]
DTX	OFF	[]
Talk	ON	[]
Handover	OFF	[]
Environment	OFF	[]
Duration ON	600	[s]
Duration OFF	1200	[s]
Total Duration	44	[h]
Number of Cycles	88	[#]
Expected Temp rise	0.05	[K]

Description	Wave Guide 1	Wave Guide 2	Dimension
Power	OFF	ON	
SAR ± SD (during exposure)	0 ± 0	2.05±1.17	[mW/g]
SAR (Min, Max) (during exposure)	0,0	0.33 , 3.12	[mW/g]
SAR ± SD (during exposure and dtx false)	0 ± 0	2.85±0.012	[mW/g]
SAR (Min, Max) (during exposure and dtx false	0,0	2.82 , 3.12	[mW/g]
SAR ± SD (during exposure and dtx true)	0 ± 0	0.34 ± 0.001	[mW/g]
SAR (Min, Max) (during exposure and dtx true)	0,0	0.33 , 0.34	[mW/g]
T ± SD	37.14± 0.017	37.05± 0.018	[C°]
T (Min, Max)	36.84 , 37.17	36.7, 37.07	[C°]
deltaT ± SD	0.09 ± 0.002	0.09±0.002	[C°]
deltaT (Min, Max)	0.09 , 0.14	0.09 , 0.14	[C°]
Fan current ± SD	0.259 ± 0.002	0.237±0	[A]
Resonance Frequency	n.a.	1817	[MHz]

Event Warnings Abortion 0

Dosimetry

Dosimetry: Methods

- High resolution FDTD analysis with SEMCAD (numerical models include meniscus and all plastic parts)
- Coupled electro-thermal evaluation
- Field validation with isotropic 3-axis Eand H-field probes
- SAR verification with dosimetric field and temperature probes (DASY4)
- Assessment of the temperature load with flexible thermistor probes

Dosimetric Concept

- numerical optimization of field distributions with respect to maximum uniformity, efficiency and minimized uncertainties
- numerical evaluation of field conditions
- verification of simulations by free field and dosimetric measurements
- determination of temperature rise
- uncertainty and variability analysis

Numerical Optimization of Petri Dish Position

loaded waveguide

Dosimetric Concept

- numerical optimization of field distributions with respect to maximum uniformity, efficiency and minimized uncertainties
- numerical evaluation of field conditions
- verification of simulations by free field and dosimetric measurements
- determination of temperature rise
- uncertainty and variability analysis

OPTIMIZED WAVEGUIDE SETUPS

Numerical Evaluation: SAR Evaluation

© Foundation for Research on Information Technologies in Society

Dosimetric Concept

- numerical optimization of field distributions with respect to maximum uniformity, efficiency and minimized uncertainties
- numerical evaluation of field conditions
- verification of simulations by free field and dosimetric measurements
- determination of temperature rise
- uncertainty and variability analysis

Dosimetry: Experimental Verification

© Foundation for Research on Information Technologies in Society

Dosimetric Concept

- numerical optimization of field distributions with respect to maximum uniformity, efficiency and minimized uncertainties
- numerical evaluation of field conditions
- verification of simulations by free field and dosimetric measurements
- determination of temperature rise
- uncertainty and variability analysis

Determination of the Temperature Rise

Experimental

- one point measurements in the temperature maximum
- time constants for temperature response dependent upon liquid height, fan speed and signal strength

Numerical

- coupled electro-thermal FDTD analysis
- heat transfer due to conduction, convection and radiation
- thin plate approximation for heat transfer coefficients

SAR & Temperature Distribution

© Foundation for Research on Information Technologies in Society

Dosimetric Concept

- numerical optimization of field distributions with respect to maximum uniformity, efficiency and minimized uncertainties
- numerical evaluation of field conditions
- verification of simulations by free field and dosimetric measurements
- determination of temperature rise and other artifacts
- uncertainty and variability analysis

Uncertainty & Variability Analysis

Uncertainty of SAR Assessment		MI	•	Su.
Fit for extrapolation to monolayer			3%	-
Fit for varying medium volume			9%	-
Vertical location of cells			3%	-
Numerical discretization (0.1 mm reference)			2%	4.9%
Determination of medium volume (± 5 µl)			3%	< 0.1%
Dielectric parameters			%	15%
E-field probe			5%	7.6%
Probe positioning			5%	1.6%
Sensor calibration for incident fields		11%		11%
Variability Analysis of SAR MI.			Su.	
Frequency dependency of loop coupler	4.5% 4.5		4.5	5%
Evaporation of dist. water (max. 2ml)	- 1		16	%
Use of a large lid on 60 mm Petri dish	ge lid on 60 mm Petri dish -		2.0%	
Determination of medium volume $(\pm 5 \mu l)$	0.3% <		<	0.1%
Dish holder misplacement (±2 mm)	0.7% 2.		2.4	%
ncident field assessment 2.2%			2.2%	
Drift 0.5%			0.5%	

sXc1800XL8 (preliminary)

- 1800 MHz, GSM-based signals, 8 chambers in matched pairs
- pair wise exposure: 2 chambers at the same exposure level
- independent monitoring and control of each exposure level
- waveguide-based exposure chambers
- exposure levels: 10 W/kg, 2 W/kg, 0.2 W/kg and sham condition
- random and user setting of exposure levels including sham control
- continuous or intermitted exposure with user defined on/off periods
- designed for the exposure of large sample volumes
- fits in one standard incubator
- monitoring and control of all exposure parameters for each chamber: E-field, temperature and fan currents
- complete uncertainty budget and variation analysis

sXc1800XL8 (preliminary)

© Foundation for Research on Information Technologies in Society

Conclusions

- different exposure systems have been developed for different biological endpoints/protocols that allow to conduct exposure and shame at exactly the same conditions except the induced RF (@ $\Delta T < 0.1^{\circ}C$)
- stable RF carrier (frequency, Pavg, low noise)
- flexible modulation schemes
- well defined and uniform induced E- and H-fields (at cell culture)
- well defined environmental conditions
- fully characterized and minimized sources of artifacts (e.g., temperature load, vibration, EMC, EMI, etc.)
- all environmental and technical parameters continuously monitored
- uncertainty analysis

Conclusions (Modulations)

- CW
- arbitrary ELF modulations
- GSM:217Hz
- GSM basic
- GSM DTX
- GSM talk: GSM Basic: 66%; DTX: 34%
- GSM environment (Talk + Environment)
- UMTS constant power, i.e. no TPC
- UMTS TPC
- D-AMPS
- IS95
- IMT2000

All signals can be applied intermittent (on/off)!

Conclusions (Exposure Systems)

Current

- sXc900 (petri 35mm, monolayer, suspension)
- sXc1800 (petri 35mm, monolayer, suspension)
- sXc1950 (petri 35mm, monolayer, suspension)
- sXcTEM (900MHz, T45 flasks, suspension)
- wirepatch (900MHz, petri 35mm, suspension)

In Development

- sXc1800XL8
- sXcTEM (27MHz, T45 flasks, suspension)
- sXcTEM (900MHz, petri 35mm, suspension)
- sXcELF-LCI (life cell imaging)
- sXc1950=ICL (life cell imaging)

Acknowledgements

- This study was generously supported by
 - German Radiation Protection Agency (BfS)
 - European Union (5th Framework Program)
 - Swiss Agency for Education and Science (BBW)
 - Mobile Manufacturers Forum (MMF)
 - GSM Association (GSMA)