Exposure setups for in vivo experiments using waveguides

T. Reinhardt, A. Bitz, A. El Ouardi, J. Streckert, V. Hansen

Chair of Electromagnetic Theory University of Wuppertal, Germany

Chair of Electromagnetic Theory, University of Wuppertal

Contents

- 1. Common features of the experimental design for three *in vivo* studies and the deduced technical requirements
- 2. Technical implementation of completed studies with AKR/J mice involving GSM and UMTS exposure at 900 and 2000 MHz, respectively
- 3. Running long-term UMTS exposure of mice at 2 GHz
 - > design and modified set-up
 - Field distribution
 - > dosimetrical investigations
- 4. Conclusion

Chair of Electromagnetic Theory, University of Wuppertal

Experimental design

- 3 studies in cooperation with the International University Bremen (Prof. A. Lerchl):
- Influence of 900 MHz electromagnetic fields on spontaneous leukaemia in AKR/J mice 160 mice exposed to generic GSM test signal, 400 mW/kg (whole body), 24 hrs / day 160 mice sham-exposed. Endpoints: leukaemia rate and production of solid tumours. End: 9/2004
- In vivo experiments on exposure to the high frequency electromagnetic fields of mobile telecommunication. B. Carcinogenesis same as 1., but generic UMTS test signal. End: 4/2005
- 3. Long-term study on the effects of UMTS signals on laboratory rodents Four generations of mice (c. 1200 animals altogether) exposed to generic UMTS test signal, different specific absorption rates (SAR). Endpoints: fertility, development, teratogenic effects. End: 7/2007
- ⇒ For all studies the biological design was prescribed by the Federal Office for Radiation Protection (BfS) concerning
 - exposure of **freely moving** animals
 - exposure at **fixed** averaged whole body specific absorption rates (**SAR**)
 - exposure by generic **GSM900 or UMTS** test signals

Chair of Electromagnetic Theory, University of Wuppertal

Exposure of non-restrained animals

- The prescribed biological design allows
 - a long-term exposure up to 24 hours per day
 - animals held in cages (i.e. usual laboratory environment)
 - standard animal handling
- but can also introduce variations of the exposure due to
 - 1. different locations of the animals in the incident field
 - 2. varying orientations (postures) of the animals with respect to the direction of wave propagation and the polarization of the field vector
 - 3. the superposition of the original incident field and the scattered field from neighbouring animals
 - 4. the age-dependent development of body mass
- \Rightarrow While points 2. + 4. are inherent to the biological design and can not be avoided, the effects of 1. + 3. can be reduced by a suitable technical design of the exposure device

Chair of Electromagnetic Theory, University of Wuppertal

Reduction of whole body exposure variation

- The technical design should provide a field distribution inside the cage as uniform as possible in order to minimize the variations due to different locations of the moving animals.
- Also, a well-defined stable and reproducible field distribution reduces the effect of scattered fields from neighbouring animals (e.g. the excitation of higher order modes)

These features together with the above mentioned requirement of a very high number of simultaneously exposed animals can be fulfilled with the concept of the radial waveguide

Chair of Electromagnetic Theory, University of Wuppertal

Design of a radial waveguide

- parallel circular metal plates
- absorbing material at radial boundary (mandatory for experiments with free-running animals in order to minimize the SWR)
- feed system: rotational symmetrical cone antenna in the centre exciting radially propagating waves
- cages arranged at constant distance from the centre

Chair of Electromagnetic Theory, University of Wuppertal

Advantages of radial waveguide exposure chamber

- + simultaneous exposure of numerous biological samples
- + uniform exposure due to highly symmetrical configuration
- + high ratio of power density to generated power
- + electrically closed system
 - ⇒ no additional shielding of laboratory exposed and sham-exposed waveguide can be located close to each other
- + complete numerical analysis feasible
 ⇒ modelling one sector with proper boundary conditions containing field excitation, exposed animals in the cage and termination of the waveguide

Chair of Electromagnetic Theory, University of Wuppertal

Exposure field: fundamental TM^z₀₀ (TEM) -mode

- waveguide's height < half the wavelength
- rotational symmetrical excitation (empty waveguide)

only TEM-wave propagating

$$E_{z}(\rho, \varphi, z) = -jA \frac{k_{0}^{2}}{\omega \mu_{0} \varepsilon_{0}} H_{0}^{(2)}(k_{0}\rho)$$

$$H_{\varphi}(\rho, \varphi, z) = -A \frac{k_0}{\mu_0} H_0^{(2)'}(k_0 \rho)$$

- E-field polarized in vertical direction
- field strength constant in the waveguide's cross-section (ρ = const.)
- field decays for large radial distances ~-
 - for ordinary arrangements field decay in exposure region rather small
- Therefore, the TEM-mode is well suited for the generation of a uniform exposure field.

Chair of Electromagnetic Theory, University of Wuppertal

Higher order modes

If height of the cages that is prescribed by animal protection authority requires a waveguide's height of $h \ge \lambda/2$

- \Rightarrow higher order modes with respect to the vertical direction can propagate in addition to the TEM-mode
 - TE^z₀₁-mode:

$$E_{\varphi}(\rho, \varphi, z) = A_{01} \frac{k_{\rho}}{\varepsilon} H_0^{(2)'}(k_{\rho}\rho) \sin\left(\frac{\pi}{h}z\right)$$
$$H_{\rho}(\rho, \varphi, z) = -jA_{01} \frac{k_{\rho}k_z}{\omega\varepsilon\mu} H_0^{(2)'}(k_{\rho}\rho) \cos\left(\frac{\pi}{h}z\right)$$
$$H_z(\rho, \varphi, z) = -jA_{01} \frac{k_{\rho}^2}{\omega\varepsilon\mu} H_0^{(2)}(k_{\rho}\rho) \sin\left(\frac{\pi}{h}z\right)$$

TM^z₀₁-mode:

$$E_{z}(\rho, \varphi, z) = -jB_{01} \frac{k_{\rho}^{2}}{\omega\mu\varepsilon} H_{0}^{(2)}(k_{\rho}\rho) \cos\left(\frac{\pi}{h}z\right)$$
$$E_{\rho}(\rho, \varphi, z) = jB_{01}k_{\rho} \frac{k_{z}}{\omega\mu\varepsilon} H_{0}^{(2)'}(k_{\rho}\rho) \sin\left(\frac{\pi}{h}z\right)$$
$$H_{\varphi}(\rho, \varphi, z) = -B_{01} \frac{k_{\rho}}{\mu} H_{0}^{(2)'}(k_{\rho}\rho) \cos\left(\frac{\pi}{h}z\right)$$

Higher order modes have non-uniform field distribution in the waveguide's cross section and different propagation properties compared to the TEM-mode

Chair of Electromagnetic Theory, University of Wuppertal

Single mode excitation of cage region

⇒ higher order modes must be suppressed

Chair of Electromagnetic Theory, University of Wuppertal

Single mode excitation of cage region

counter measure: reduction of waveguide's height for smaller radii

⇒ single mode excitation of cage region

Chair of Electromagnetic Theory, University of Wuppertal

Example: single mode excitation of the cage region

- frequency 2 GHz
- cage height 16 cm (h = λ)
- height in the cage region: 17cm height in the centre: 6cm

⇒ uniform field distribution in vertical direction, exposure field is given by the TEM-wave

unwanted field components in the cage region are negligible as compared to the wanted z-component of the fundamental mode

Chair of Electromagnetic Theory, University of Wuppertal

Exposure of large animals or groups of animals

- For animal or group size in the dimension of wavelength the scattered field is not negligible and can affect the field distribution in neighbouring cages
- Due to the movement of the animals the excitation of higher order modes with circumferential variation can lead to non-reproducible exposure
- Therefore a 'decoupling' of adjacent cage regions is necessary in order to keep stable exposure field conditions

Chair of Electromagnetic Theory, University of Wuppertal

Approach A: decoupling of adjacent sectors by metal bars

- metal bars attached to the upper and lower plate between the cages
 - bars do not alter the propagation properties of the TEM-mode
 - but shift-up the cut-off frequencies of unwanted higher order modes out of the frequency range of operation
 - height H and width W optimised by numerically solving the eigenvalue problem of the waveguide
 - applicable for waveguide heights $\lambda/2 \le h \le \lambda$ and exposure of large animals or larger numbers of mice per cage cross section

Example: field distribution in cross-section of sector decoupled by metal bars

empty sector with metal bars:

exposure field given by TEM-wave only

sector with metal bars, cage and simplified models for animals (ellipsoids):

- expected field distortions (scattered fields) caused by animals are restricted to the immediate vicinity of the animals
- neighbouring sectors are decoupled

Chair of Electromagnetic Theory, University of Wuppertal

Approach B: decoupling of adjacent sectors by 'high impedance' walls

- application for waveguide heights h ≥ λ and exposure of large animals or larger numbers of mice per cage
- `high impedance` walls must not alter the propagation properties of the TEM-mode
- therefore, the wall impedance must tend to infinity $Z_w \rightarrow j \propto$

Chair of Electromagnetic Theory, University of Wuppertal

Cross section of sector with high impedance walls

anisotropic wall impedance tends to infinity for the optimum groove depth

Chair of Electromagnetic Theory, University of Wuppertal

Model for sector with high impedance walls

Chair of Electromagnetic Theory, University of Wuppertal

Computed field distribution with high impedance walls

0.65

290

⇒ uniform field distribution in vertical and azimuthal direction

 \Rightarrow exposure field only given by the TEM-wave

0.1

6

Chair of Electromagnetic Theory, University of Wuppertal

|E| [V/m]

430

1.2

570

Reinhardt, Bitz, El Ouardi, Streckert, Hansen

145

Technical implementation

- 3 studies in cooperation with the International University Bremen (Prof. A. Lerchl):
- Influence of 900 MHz electromagnetic fields on spontaneous leukaemia in AKR/J mice 160 mice exposed to generic GSM test signal, 400 mW/kg (whole body), 24 hrs / day 160 mice sham-exposed. Endpoints: leukaemia rate and production of solid tumours. End: 9/2004
- In vivo experiments on exposure to the high frequency electromagnetic fields of mobile telecommunication. B. Carcinogenesis same as 1., but generic UMTS test signal. End: 4/2005
- Long-term study on the effects of UMTS signals on laboratory rodents
 Four generations of mice (c. 1200 animals altogether) exposed to generic UMTS test signal, different
 specific absorption rates (SAR). Endpoints: fertility, development, teratogenic effects. End: 7/2007
- ⇒ For all studies the biological design was prescribed by the Federal Office for Radiation Protection (BfS) concerning
 - exposure of freely moving animals
 - exposure at **fixed** averaged whole body specific absorption rates (**SAR**)
 - exposure by generic GSM900 or UMTS test signals

Chair of Electromagnetic Theory, University of Wuppertal

Exposure of AKR/J mice to GSM 900 test signal

- Life-long exposure
- 7 mice per cage (cage height 15.5 cm)
- 24 exposed / 24 sham-exposed cages
- Exposure device:
 - 2 radial waveguides with diameter of 4 m and height of 17 cm ($\lambda/2 \le h \le \lambda$), 24 sectors decoupled by metal bars

Results already published

- Sommer, A. M., Streckert, J., Bitz, A. K., Hansen, V. W., Lerchl, A.: No effects of GSM-modulated 900 MHz electromagnetic fields on survival rate and spontaneous development of lymphoma in female AKR/J mice. BMC Cancer, 4:77, 2004.
- Sommer, A. M., Bitz, A. K., Streckert, J., Hansen, V. W., Lerchl, A.: No effect from 900 MHz electromagnetic fields on the spontaneous development of lymphoma in female AKR/J mice. 26th BEMS Annual Meeting, Washington, DC, June 2004, 258-259.

Chair of Electromagnetic Theory, University of Wuppertal

GSM 900: exposure system (1/2)

Chair of Electromagnetic Theory, University of Wuppertal

GSM 900: exposure system (2/2)

Chair of Electromagnetic Theory, University of Wuppertal

Electric field and SAR distribution

Example of electric field distribution for different configurations of 7 mice per cage

Averaged whole body SAR_{wb} of 0.4 W/kg at P_{in} = 35 W

Standard deviation of SAR_wb: $\sigma \approx \pm \, 40\%$

SAR distribution in detailed mouse model with spatial resolution of (1.2 mm)³, model scaled from a 7-day-old rat (IT'IS, Switzerland)

The evaluation of organ-specificic SAR is not necessary due to the biological endpoints, but the SAR distribution must be checked with respect to possible 'hot spots'.

Chair of Electromagnetic Theory, University of Wuppertal

Technical implementation

- 3 studies in cooperation with the International University Bremen (Prof. A. Lerchl):
- Influence of 900 MHz electromagnetic fields on spontaneous leukaemia in AKR/J mice 160 mice exposed to generic GSM test signal, 400 mW/kg (whole body), 24 hrs / day 160 mice sham-exposed. Endpoints: leukaemia rate and production of solid tumours. End: 9/2004
- In vivo experiments on exposure to the high frequency electromagnetic fields of mobile telecommunication. B. Carcinogenesis same as 1., but generic UMTS test signal. End: 4/2005
- Long-term study on the effects of UMTS signals on laboratory rodents
 Four generations of mice (c. 1200 animals altogether) exposed to generic UMTS test signal, different
 specific absorption rates (SAR). Endpoints: fertility, development, teratogenic effects. End: 7/2007
- ⇒ For all studies the biological design was prescribed by the Federal Office for Radiation Protection (BfS) concerning
 - exposure of freely moving animals
 - exposure at **fixed** averaged whole body specific absorption rates (**SAR**)
 - exposure by generic GSM900 or UMTS test signals

Chair of Electromagnetic Theory, University of Wuppertal

Exposure of AKR/J mice to UMTS test signal

- Same exposure condition as for the GSM 900 study, but height of cages reduced from 15.5 cm to 7 cm
- Exposure device:
- same radial waveguides as for the GSM 900 study, but reduced height of 8 cm ($\lambda/2 \le h \le \lambda$)

Results already published

- A.M. Sommer, A. Lerchl, A.K. Bitz, J. Streckert, V.W. Hansen: UMTS-modulated electromagnetic fields do not affect hematological or histological parameters in lymphoma-prone mice. 28th BEMS Annual Meeting, Cancun, Mexico, June 2006, 317-318.
- Lerchl, A., Sommer, A.M., Bitz, A., Streckert, J., Hansen, V.: UMTS-modulated electro-magnetic fields do not influence the development of lymphoma in female AKR/J mice. 27th BEMS Annual Meeting, Dublin, Ireland, June 2005, 177.
- Bitz, A. K., Streckert, J., Sommer, A. M., Lerchl, A., Hansen, V. W.: 2 GHz-exposure of nonrestrained AKR/J mice in a slightly over-moded Radial Waveguide. 26th BEMS Annual Meeting, Washington, DC, June 2004, 139.

Chair of Electromagnetic Theory, University of Wuppertal

UMTS: 2 GHz exposure system

Chair of Electromagnetic Theory, University of Wuppertal

Electric field and SAR distribution

Example of electric field distribution for different configurations of 7 mice per cage

Averaged whole body SAR_{wb} of 0.4 W/kg at P_{in} = 15 W

Standard deviation of SAR_{wb}: $\sigma = \pm 50\%$

SAR distribution in detailed mouse model with spatial resolution of (1.2 mm)³, model scaled from a 7-day-old rat (IT'IS, Switzerland)

SAR_{wb} = 253 mW/kg at P_{in} = 15 W

The evaluation of organ-specific SAR is not necessary due to the biological endpoints, but the SAR distribution must be checked with respect to possible 'hot spots'.

Chair of Electromagnetic Theory, University of Wuppertal

Technical implementation (3)

- 3 studies in cooperation with the International University Bremen (Prof. A. Lerchl):
- Influence of 900 MHz electromagnetic fields on spontaneous leukaemia in AKR/J mice 160 mice exposed to generic GSM test signal, 400 mW/kg (whole body), 24 hrs / day 160 mice sham-exposed. Endpoints: leukaemia rate and production of solid tumours. End: 9/2004
- In vivo experiments on exposure to the high frequency electromagnetic fields of mobile telecommunication. B. Carcinogenesis same as 1., but generic UMTS test signal. End: 4/2005
- Long-term study on the effects of UMTS signals on laboratory rodents
 Four generations of mice (c. 1200 animals altogether) exposed to generic UMTS test signal, different
 specific absorption rates (SAR). Endpoints: fertility, development, teratogenic effects. End: 7/2007
- ⇒ For all studies the biological design was prescribed by the Federal Office for Radiation Protection (BfS) concerning
 - exposure of freely moving animals
 - exposure at **fixed** averaged whole body specific absorption rates (**SAR**)
 - exposure by generic GSM900 or UMTS test signals

Chair of Electromagnetic Theory, University of Wuppertal

Exposure of strain C57BL mice to UMTS test signal (running project)

- 2688 animals are exposed during the study
- 128 cages in total: 32 sham-exposed groups / 3x 32 groups exposed with 0.08, 0.4 and 1.3 W/kg

Flowchart of animals per cage:

Chair of Electromagnetic Theory, University of Wuppertal

Exposure setup (1/2)

Chair of Electromagnetic Theory, University of Wuppertal

Exposure setup (2/2)

Chair of Electromagnetic Theory, University of Wuppertal

Field measurements in the implemented exposure device

Animal models (1/2)

- 2 models obtained from IT'IS, Zurich, Switzerland
 - > 1st model: pregnant rat: 275g, spatial resolution 1mm
 - 2nd model: 7-day-old rat: 17g, spatial resolution 0,5mm

Adult mice (weight between 24g and 34g):

- Scaled from 1st model: spatial resolution 1.2 mm
- Scaled from 2nd model: spatial resolution 0,7 to 1.2mm

young mice 17g:

Scaled from 2nd model: spatial resolution 0.5 mm

Mouse pup (age: 9 days):

- Ellipsoids were used: weight: 7 g;
- spatial resolution: 0.6 mm

Chair of Electromagnetic Theory, University of Wuppertal

Animal models (2/2)

Chair of Electromagnetic Theory, University of Wuppertal

Electrical material parameters

<u>material</u>	<u>permittivity</u>	<u>conductivity</u>	<u>tissue density</u>
tail/muscle(parallel_fiber)	55,096	1,5417	1040
tail/skin(dry)	38,617	1,251	1158,85
body/air	1	0	1,3
body/avg. Brain	43,266	1,238	1030
body/blood	59,081	2,161	1158,85
body/bone_cortical	11,675	0,304	1600
body/marrow_not_infiltrated	5,352	0,075	1158,85
body/cartilage	39,836	1,399	1158,85
body/cerebro_spinal_fluid	66,96	3,048	1158,85
body/eye_tissiue(sclera)	53,32	1,703	1000
body/fat	5,33	0,085	1100
body/glands	57,899	1,61	1158,85
body/heart	55,899	1,887	1040
body/kidney	53,945	2,066	1158,85
body/large_intestine	54,798	1,686	1040
body/liver	43,885	1,384	1040
body/lung(extrapolated)	34,964	1,026	1040
body/muscle(transverse_fibre)	53,333	1,434	1040
body/nails	11,67	0,304	1158,85
body/nerve	30,666	0,901	1158,85
body/skin(wet)	43,575	1,317	1100
body/small_intestine	55,486	2,81	1040
body/spleen	53,455	1,889	1158,85
body/stomach	62,948	1,818	1158,85
body/teeth	11,67	0,304	1158,85
body/tongue	53,32	1,472	1158,85
body/trachea	40,304	1,193	1158,85
body/uterus	58,636	1,878	1158,85
body/bone_cortical	11,67	0,304	1300
ave-Rat tissue	43,195	1,411	1137,22

material parameters according to Brooks database were used

http://www.fcc.gov/fccbin/dielec.sh

uncertanty of the material parameters in literature

changing the material parameters ± 10%

Chair of Electromagnetic Theory, University of Wuppertal

Configurations (1)

The decision which constellations of mice in a cage from an infinite number of possibilities are considered for a representative numerical dosimetry is not trivial, since

- the movement of the animals is a dynamic, non-deterministic process
- some constellations are more typical than others
- even small variations of a configuration can change the SAR distribution
- the number of computer runs must be limited to a certain quantum (e.g. < 100)

Chair of Electromagnetic Theory, University of Wuppertal

Configurations (2)

Ideally, many calculations and a weighting of different configurations according to their occurrence might be reasonable.

However, for a reliable statistic the required data are not available.

For a practicable assessment of the whole body SAR without weighting

- typical configurations were identified in agreement with the IU Bremen (e.g. (agglomerating mice, pubs close to the dam)
- some configurations known as "worst cases" were included in order to avoid an underestimation of SAR (e.g. mice erected on the hind legs, isolated animals)

For future investigations a registration of time-varying configurations is planned, but an exhaustive data collection in an animal laboratory must be assigned to a separate project.

Chair of Electromagnetic Theory, University of Wuppertal

Configurations (3)

The following configurations of mice in a cage were analysed:

Chair of Electromagnetic Theory, University of Wuppertal

1st stage: exposure field for one configuration

1st stage: whole body SAR for 3 mice per cage

configuration 1

For more than 1 animal, a simple estimation of the wb-SAR as a function of the location of the models is not always possible.

Chair of Electromagnetic Theory, University of Wuppertal

2nd stage: SAR distribution of 2 adult mice

example of 1 configuration

2nd mouse is shadowed by the first one

- larger SAR values occur in the 1st mouse
- Wb SAR: 1st mouse: 1,18 W/kg 2nd mouse: 0,75 W/kg

 $P_{sector} = 1W$

SAR distribution for 1 configuration

Chair of Electromagnetic Theory, University of Wuppertal

2nd stage: whole body SAR for 2 mice per cage

Chair of Electromagnetic Theory, University of Wuppertal

3rd stage: field distribution and SAR distribution (1/2)

exposure region

an example of 1 configuration with 8 mice

Chair of Electromagnetic Theory, University of Wuppertal

3rd stage: field distribution and SAR distribution (2/2)

High field values at the outer surface of the animal, do not necessarily lead to high SAR values at the animals surface

Chair of Electromagnetic Theory, University of Wuppertal

3rd stage : whole body SAR for 8 mice per cage

Whole body SAR for 6 pups (7g)

Whole body SAR for the adult mice

Chair of Electromagnetic Theory, University of Wuppertal

4th stage: 4 young mice per cage; SAR distribution for one mouse

example of 1 configuration

wb.-SAR of the 1st mouse: 1,45 W/kg Averaged wb-SAR for the configuration: 1,6 W/kg

P_{sector} = 1W

4th stage: whole body SAR for 4 young mice per cage

Chair of Electromagnetic Theory, University of Wuppertal

Conclusion

- With the modified radial waveguide setup we achieved a well defined exposure, merely leaving those variations of the whole body SAR introduced by the biological design.
- The prescribed SAR values of 1.3 W/kg, 0.4 W/kg, 0.08 W/kg were adjusted according to the 1st stage of the study (adult mice). The corresponding input power was kept constant during all stages because of the animals' rapid growth.

P _{in} = 28 W; S = 22 W/m ²	Wb -SAR for high dose in W/kg	Standard deviation
1 st configuration	1,3	31%
2 nd configuration	1,44	28%
3 rd configuration; adult:	1,21	50%
pups:	1,92	54%
4 th configuration	2,34	33%

Chair of Electromagnetic Theory, University of Wuppertal