in vitro-Experimente unter Exposition mit hochfrequenten elektromagnetischen Feldern der Mobilfunkkommunikation C. Blut-Hirn-Schranke

Dr. rer. nat. Helmut Franke Klinik und Poliklinik für Neurologie Universitätsklinikum Münster hfranke@uni-muenster.de

Influence of RF-EMF on endothelial cells of the BBB?

BBB in vitro model (rat brain endothelial cells)

GSM & UMTS: 0.4, 1, 3 or 8 W/kg (72 h)

- differential gene expression (chip arrays)
- selection of BBB related candidates
- verification of protein expression (rt-PCR)
- identification / biochemical analysis of affected proteins

in vitro approach

- reduction of in vivo complexity
- precise determination of field parameters
- reproducible exposure conditions
- facilitated field and temperature monitoring

methods

- establishment and characterization of RBEC cultures as BBB in-vitro model
- · design of exposure unit
- · isolation of RNA from RBEC
- gene expression analysis
- rt-PCR analysis of regulated genes
- (protein analyses)

closed?

open?

The Blood-Brain Barrier (BBB)

Endothelial cells of the cerebral capillaries form the permeability barrier

The BBB: Localization in vivo

Cross-section of a cerebral capillary

Brain Capillary
 Endothelial Cell
 (BCEC) with

- 1 Astrocyte foot processes
- 2 Capillary lumen and erythrocyte
- 3 Pericyte
- 4 Basal lamina

(Krstić 1988)

Function of the BBB

- maintenance of a constant solute/ion environment: "homeostasis" of the CNS
- essential for proper brain function
- control of substance flow between brain tissue and circulating blood
- controlled import of nutrients into the CNS
- protection against toxins

Special feature of the cerebral microvasculature: Tight Junctions

Tight endothelium Leaky endothelium

Tight junctions connect cells to build continuous monolayers

Proteins at tight junctions

Transport mechanisms at a cell monolayer

Rat brain capillary endothelial cells (RBEC)

isolation of capillary vessels

2nd enzymatic digest

isolation of endothelial cells

to the sowing and culturing

RBEC monolayer

characterization of RBEC

- + squamous morphology
- · + von-Willbrand-Factor-VIII
- · + vimentin
- · + tight junction proteins: ZO-1, occludin
- · smooth muscle actin, GFAP, CD11b
- · ---> minimal cell contamination

Exposure set-up

- two radial wave guides
 - 2 x 6 samples, thermistor probe, field antenna
 - parallel exposure & sham exposure
- generic UMTS signal
- generic GSM1800 signal
- permanent exposure
 - 3d duration
 - 4 different exposure levels (~0.4-8 W/kg)

assembly of radial waveguide

- 6 petridishes
- 40 cm diameter, 9 cm height
- sample holder centres petridishes
- temperature probe
- field probe

Exposure setup:

- · amplifier
- · signal generator
- wave guides
- · samples
- · incubator

chip microarrays

Quelle: Affimetrix

RNA-analysis with chip-microarrays

protocol for chip-arrays

- RNA isolation from RBEC: Qiagen RNeasy kit; store@ -70°C
- quality control: Agilent Bioanalyzer
- RNA-conc: min. 1μg/μL
- reverse transcription RNA -> cDNA
- in vitro transcription cDNA -> cRNA+biotinlabelling
- fragmentation of cRNA
- · hybridization: Affym. GeneChip® Rat Genome 230 2.0 Array
- washing and staining
- array scanning
- evaluation: Genedata Expressionist 2.0 pro

summary

- ✓ establishment of an isolation method for RBEC
- √ characterazation of RBEC
- ✓ installation of exposure device and determination
 of field parameters
- √ RNA isolation
- exposure of RBEC
- · chip-arrays for differential gene expression
- identification of protein targets