Expositionsanlagen für Langzeitstudien GSM 900 MHz und UMTS 2 GHz

T. Reinhardt, A. Bitz, A. El Ouardi, J. Streckert, V. Hansen
Lehrstuhl für Theoretische Elektrotechnik
Universität Wuppertal

A. Lerchl International University Bremen, Germany

Inhalt

- 1. Biologisches Design und technische Anforderungen
- 2. GSM 900: Befeldung von AKR/J Mäusen
 - Design und Aufbau
 - Feldverteilung & Dosimetrie
- 3. UMTS 1: Befeldung von AKR/J Mäusen
 - Design und Aufbau
 - > Feldverteilung & Dosimetrie
- 4. UMTS 2: Langzeitexperiment mit Mäusen
 - Design und Aufbau
 - Feldverteilung & Dosimetrie
- 5. Zusammenfassung

Biologisches Design/ Technische Anforderungen

- Kooperation mit der International University Bremen
- Untersuchung biologischer Gesichtspunkte
 - u.a. Verhaltensauffälligkeiten, Vermehrungsfähigkeit und Entwicklung
- Tiere müssen sich frei in ihren Käfigen bewegen können
- Befeldung wird mit folgenden Signalen durchgeführt:
 - > 1. Projekt: GSM 900
 - 2. Projekt und 3. Projekt: UMTS (generisches UMTS-Testsignal)

Anforderungen an die Exposition

 Während aller Projekte müssen die Tiere dem gleichen Feld ausgesetzt sein, unabhängig von ihrer absoluten Position im Käfig

> Um das erreichen zu können, wird eine homogene Feldverteilung im Expositionsbereich benötigt.

Wahl der Expositionsanlage

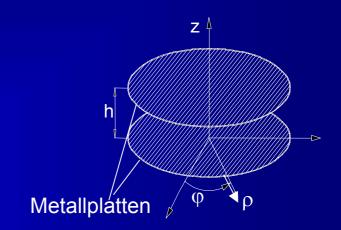
- Anforderung:
 - Aufnahme vieler Käfige
 - möglichst homogene Feldverteilung in den Käfigen
- Benötigt: HF-Expositionskammer mit hohem Grad an Symmetrie
 - Käfige auf Zylinderfläche um eine zentrale Antenne
 - Radiale Wellenleitung

Neben hoher Symmetrie weitere Vorteile:

Elektromagnetisch abgeschirmte Expositionskammer:

- keine weitere Abschirmung und/oder Auskleidung des Versuchsraums mit Absorbern notwendig
- Kammern für Expositionsgruppe und Kontrollgruppe (nicht exponiert) können direkt benachbart sein

Grundwellentyp: TEM-Welle



TEM - Welle

• In der leeren radialen Wellenleitung mit $h \le \lambda/2$ und bei rotationssymmetrischer Anregung kann sich nur die TEM-Welle ausbreiten.

$$E_z(\rho, \varphi, z) = -jA \frac{k_0^2}{\omega \mu_0 \varepsilon_0} H_0^{(2)}(k_0 \rho)$$

$$H_{\varphi}(\rho, \varphi, z) = -A \frac{k_0}{\mu_0} H_0^{(2)'}(k_0 \rho)$$

- Feldstärke ist konstant im Querschnitt der Wellenleitung
- E-Feld ist in vertikaler Richtung polarisiert
- Feldstärke klingt in Ausbreitungsrichtung näherungsweise mit $\frac{1}{\sqrt{
 ho}}$ ab.

Wellentypen hoher Ordnung

 $h \ge \lambda/2$ \Rightarrow Wellentypen höherer Ordnung bzgl. der vertikalen z-Richtung sind ausbreitungsfähig, die sich der TEM-Welle in der leeren Wellenleitung überlagern

$$E_{\varphi}(\rho, \varphi, z) = A_{01} \frac{k_{\rho}}{\varepsilon} H_0^{(2)'}(k_{\rho} \rho) \sin\left(n \frac{\pi}{h} z\right)$$

$$H_{\rho}(\rho, \varphi, z) = -jA_{01} \frac{k_{\rho}k_{z}}{\omega \varepsilon \mu} H_{0}^{(2)}(k_{\rho}\rho) \cos\left(n\frac{\pi}{h}z\right)$$

$$H_z(\rho, \varphi, z) = -jA_{01} \frac{k_\rho^2}{\omega \varepsilon \mu} H_0^{(2)}(k_\rho \rho) \sin\left(n\frac{\pi}{h}z\right)$$

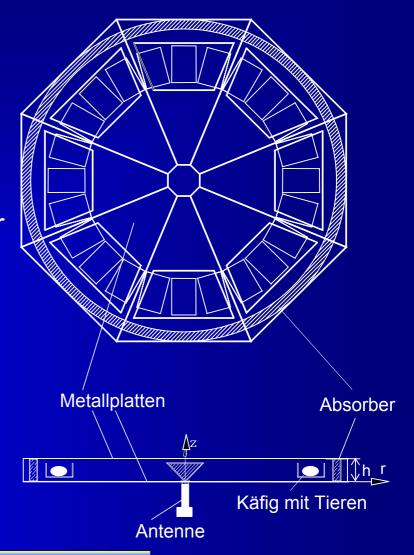
➤ TM^z_{0n}-Welle:

$$E_z(\rho, \varphi, z) = -jB_{01} \frac{k_\rho^2}{\omega\mu\varepsilon} H_0^{(2)}(k_\rho\rho) \cos\left(n\frac{\pi}{h}z\right)$$

$$E_{\rho}(\rho, \varphi, z) = jB_{01}k_{\rho} \frac{k_{z}}{\omega\mu\varepsilon} H_{0}^{(2)'}(k_{\rho}\rho)\sin\left(n\frac{\pi}{h}z\right)$$

$$H_{\varphi}(\rho, \varphi, z) = -B_{01} \frac{k_{\rho}}{\mu} H_{0}^{(2)'}(k_{\rho} \rho) \cos\left(n \frac{\pi}{h} z\right)$$

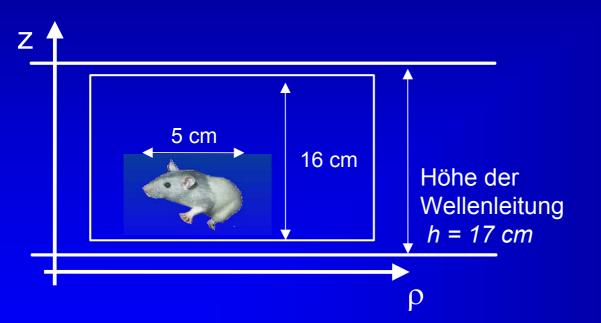
⇒ inhomogene Feldverteilung im Querschnitt der radialen Wellenleitung


GSM 900 (abgeschlossenes Projekt)

- Exposition mit einem typischen GSM Signal 900MHz
- 2 Tiergruppen werden zeitgleich exponiert:
 - > 1.Dosis: 0 (Scheinexposition)
 - > 2. Dosis: 0.4 W/kg
- 320 weibliche Mäuse werden benötigt
 - > 160 Mäuse werden scheinexponiert
 - > 160 Mäuse werden exponiert
 - Lebenslange Exposition
 - Bis zu 7 Mäuse befinden sich in einem Käfig

Aufbau der radialen Wellenleitung für GSM 900

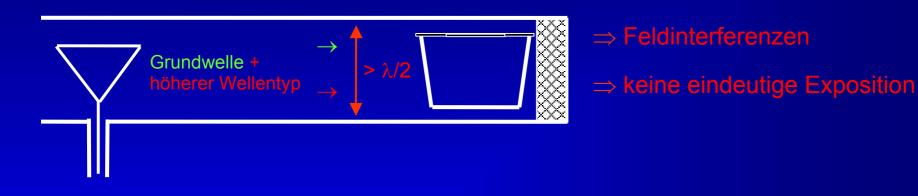
- 8-eckige Form, 4m Spannweite
- Plattenabstand 17cm
- Antenne befindet sich in der Mitte der Wellenleitung
- Käfige sind auf konstantem Radius um die Antenne angeordnet
- 24 Käfige pro Wellenleitung



GSM 900: Dimensionierung der Wellenleitung

 Durch Bestimmungen des Tierschutzes ist vorgeschriebene Höhe der Käfige:

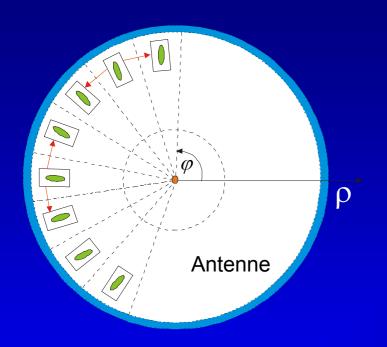
$$h_{cage} = 16 \text{ cm} > \frac{\lambda_0}{2} \approx 15 \text{ cm}$$
 bei f= 900 MHz



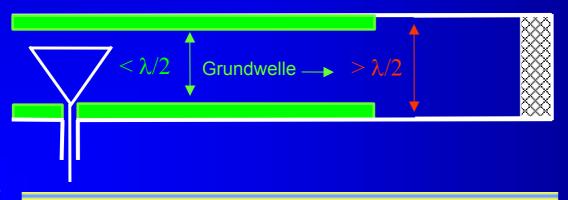
ausbreitungsfähige Wellen

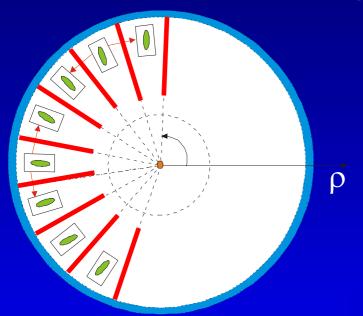
Frequency	900 MHz
TEM	X
TE _{m1}	X
TM _{m1}	X

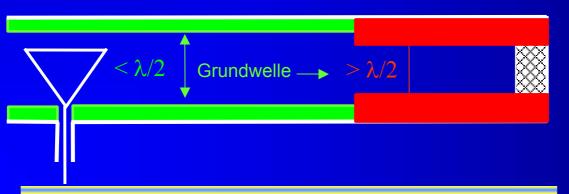
GSM 900: Dimensionierung des Wellenleiters

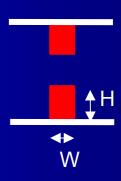


Gegenmaßnahme: Höhenreduzierung


⇒ Anregung mit der Grundwelle


GSM 900: Entkopplung der Käfigbereiche

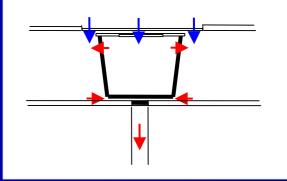

- An den Mäusen wird das Feld gestreut
- Höhere Moden, die angeregt werden, können sich ausbreiten
 - Verkopplung der Felder in den Käfigbereichen
 - Keine reproduzierbare Feldverteilung



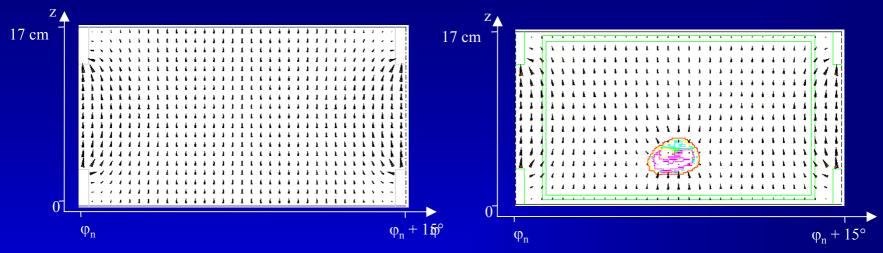
GSM 900: Entkopplung der Käfigbereiche

- Gegenmaßnahme: ideal leitfähige Stege zwischen den Käfigbereichen
 - ✓ Höhere Moden können sich nicht ausbreiten
 - ✓ Entkopplung der Käfigbereiche

GSM 900: Expositionsanlage



GSM 900: Expositionsanlage



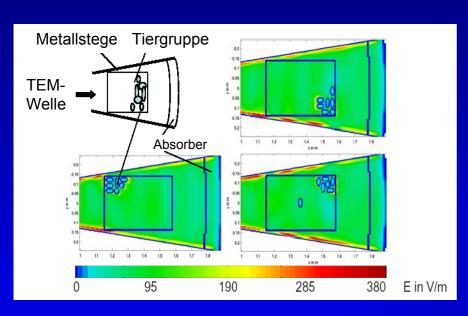
GSM 900: Feldverteilung im Querschnitt eines Expositionsbereichs

Leerer Expositionsbereich

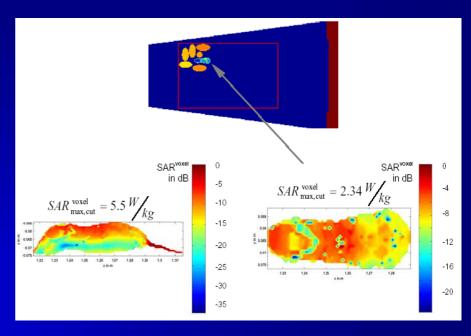
Numerische Berechnungen:

SAR: 0,4 W/kg

 $P_{in} = 35 \text{ W}$


 $\sigma \approx \pm 40\%$ (Ganzkörper-SAR)

Inhomogener Streukörper befindet sich im Expositionsbereich


Lokale Feldstörung

Feldverteilung und Dosimetrie

Beispiele für die elektrische Feldverteilung bei verschiedenen Gruppierungen von 7 Mäusen im Käfig (P_{in} = 35 W)

Lokale SAR Verteilung

(SAR_{wb} = 366 mW/kg, Auflösung 1.2mm (Voxel-Größe)).

Maximum über ein Voxel:

SAR_{voxel} = 5.9 W/kg.

UMTS 1 (abgeschlossenes Projekt)

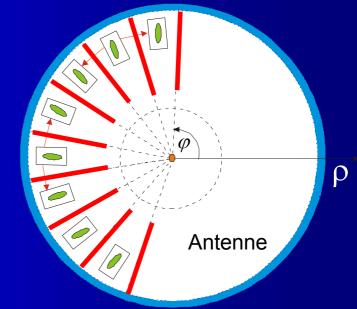
- Exposition mit einem synthetischen UMTS-Signal gemäß FDD - Standard bei 2000 MHz
- 2 Tiergruppen werden zeitgleich exponiert:
 - 1.Dosis: 0 (Scheinexposition)
 - > 2. Dosis: 0.4 W/kg
- 320 Mäuse werden benötigt
 - > 160 Mäuse werden scheinexponiert
 - > 160 Mäuse werden exponiert
 - Lebenslange Exposition
 - Bis zu 7 Mäusen befinden sich in einem Käfig

UMTS 1: Aufbau

Die für die GSM – Frequenz 900 MHz verwendete Wellenleitung wurde im Wesentlichen übernommen

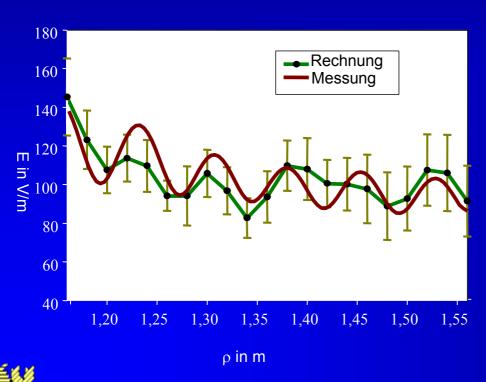
- Frequenz: 2000 MHz $\Rightarrow \lambda/2 \approx 7,5$ cm
 - > Neue Dimensionierung

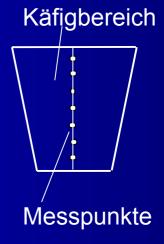
- Prüfung der Abschirmmaßnahmen (Metallgitter & Dämpfungskamine)
 - > effektiv bei f = 2000 MHz
- Plattenabstand h wurde von 17cm auf 8 cm reduziert
 - HF-Einspeisung neu konstruiert
 - Käfige wurden auf 7 cm Höhe abgesägt (Sondergenehmigung der Tierschutzkommission)

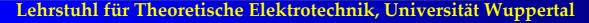


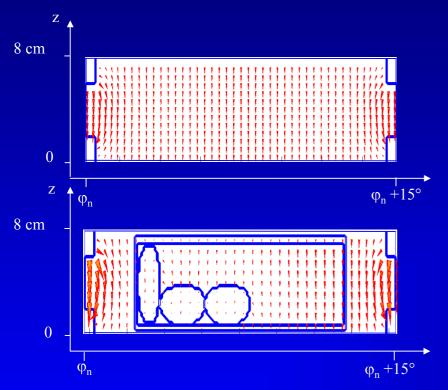
UMTS 1: Dimensionierung des Wellenleiters

h = 8 cm > $\lambda/2 \approx 7.5$ cm \Rightarrow gleiche konstruktive Maßnahmen erforderlich, um die Ausbreitung höherer Wellentypen zu verhindern


- 1.Gegenmaßnahme: Höhenreduzierung
 - > Anregung mit der Grundwelle
- 2. Gegenmaßnahme: Einfügen ideal leitfähiger Stege
 - Entkopplung der Sektoren

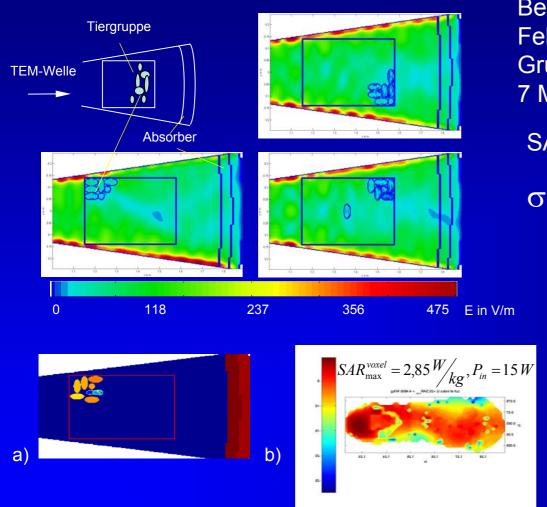

UMTS 1: Feldverteilung und Dosimetrie


- Numerische Analyse der Feldverteilung mit einem FDTD Verfahren
- Messtechnische Analyse der Feldverteilung (Messystem: Schmidt & Partner Engineering AG, Easy4, V4.0 und eigenes Messystem)


Feldvariation für alle Käfigbereiche:

 $\sigma \approx \pm 17\%$

UMTS 1: Feldverteilung im Querschnitt eines Expositionsbereichs


Numerisch berechnete Feldverteilungen im Querschnitt eines 15°-Sektors der radialen Wellenleitung mit und ohne Tiermodelle Leerer Expositionsbereich

3 Streukörper befinden sich im Käfig im Expositionsbereich

Lokale Feldstörung

UMTS 1: Dosimetrie

Beispiele für die elektrische Feldverteilung bei verschiedenen Gruppierungen von 7 Mäusen im Käfig (P_{in} = 15 W)

SAR_{wb:} 0.4 W/kg

 $\sigma \approx \pm 50 \%$

Abschätzung der lokalen SAR

- a) Einfügung eines hoch aufgelösten Tiermodells
- b) SAR-Verteilung

Ganzkörper SAR für diesen Einzelfall: SAR_{wb} = 0,253 W/kg

Über 10g : SAR_{10a} < 0,3W/kg

UMTS 2: Langzeitexposition mit Mäusen

- Exposition mit einem generischen UMTS-Testsignal bei 2000 MHz
- 4 Tiergruppen werden zeitgleich exponiert:
 - 1.Dosis: 0 (Scheinexposition)
 - > 2. Dosis: 0.08 W/kg
 - > 3. Dosis: 0.4 W/kg
 - > 4. Dosis: 1.3 W/kg

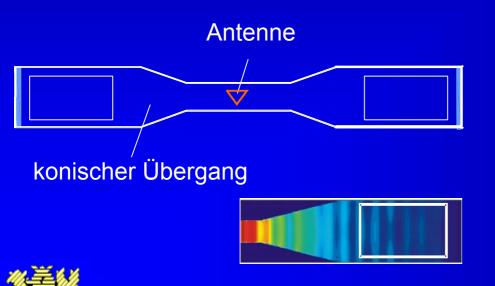
UMTS 2: Design der Studie

2 trächtige Weibchen & 1 Männchen 14 Tage

1 trächtiges Weibchen & 1 Männchen

7 Tage

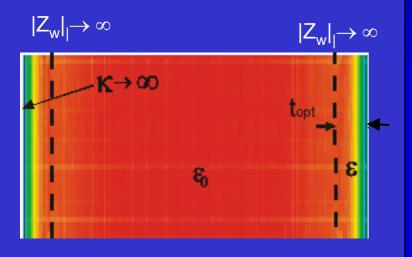
1 Weibchen (erneut trächtig),1 Männchen & 6 Jungtiere


21 Tage

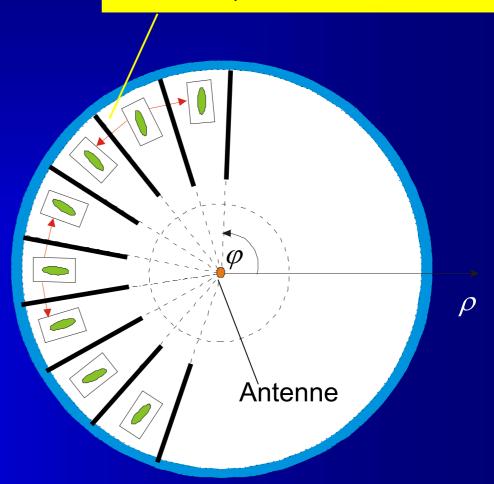
Anzahl der Mäuse pro Käfig sowie deren Körpergröße unterliegen einer großen Variation

UMTS 2: Anregung des Expositionsbereichs mit dem Grundwellentyp

- Um eine einwellige Anregung zu gewährleisten, wird die Höhe der Leitung mit einem konischen Übergang von 6cm (h≤ λ/2) nach außen hin auf 17cm vergrößert.
- gleichmäßige Feldverteilung in vertikaler Richtung im Expositionsbereich
- Das Expositionsfeld ist durch die TEM-Welle gegeben

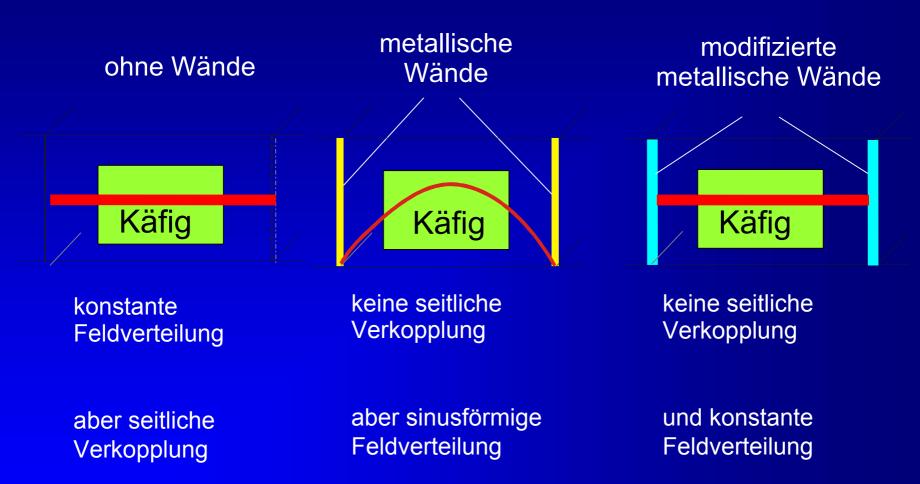


Feldkomponenten in x- und y-Richtung sind vernachlässigbar im Vergleich mit der Hauptkomponente in z-Richtung


UMTS 2: Separation der Käfigbereiche

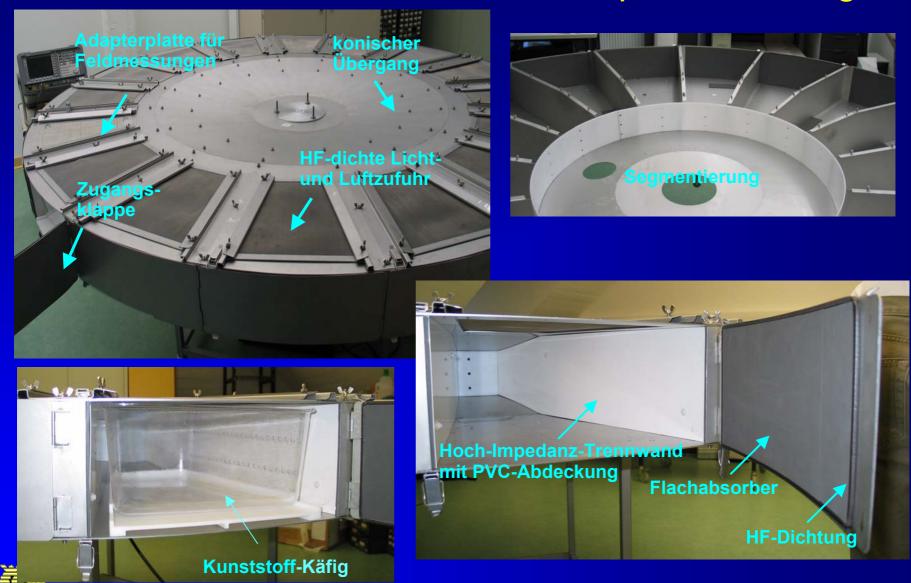
⇒ Konstante Feldverteilung im Expositionsbereich

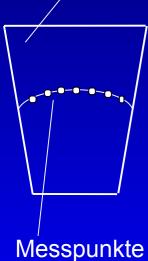
 \Rightarrow |E|: $\sigma \approx \pm 11\%$

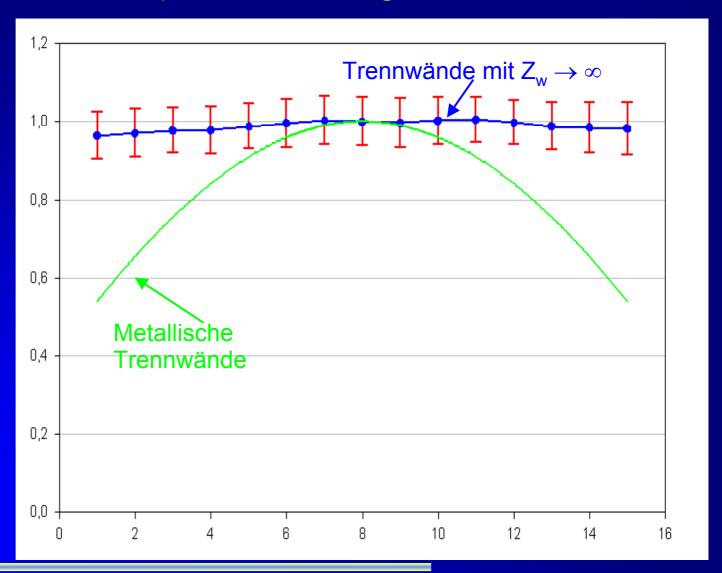


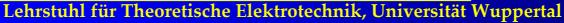
Trennwände mit $|Z_w|_{|} \rightarrow \infty$ verhindern die azimutale Verkopplung des Feldes der einzelnen Expositionsbereiche

UMTS 2: Eigenschaften der Trennwände

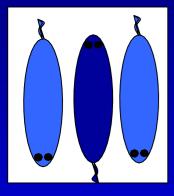

UMTS 2: installierte Expositionsanlage

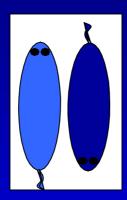


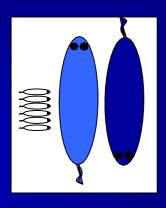

UMTS 2: Detaillierter Aufbau der Expositionsanlage



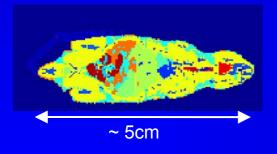
UMTS 2: Feldmessungen in einer baugleichen Expositionsanlage



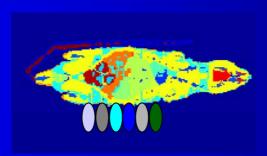



UMTS 2: Konfigurationen und Modelle

2 trächtigeWeibchen &1 Männchen



1 trächtiges Weibchen & 1 Männchen



- 1 Männchen &
- 1 Weibchen &
- 6 Jungtiere

1 trächtige Maus

Muttertier mit 6 Jungtieren

2 erwachsene Mäuse

Zusammenfassung

konstruktive Maßnahmen: Projekt 1 & Projekt 2

- Höhenreduzierung durch Sprung, so dass nur mit der Grundmode angeregt wird
- Entkopplung der Felder und Unterdrückung höherer
 Wellentypen durch das Einfügen ideal leitfähiger Stege

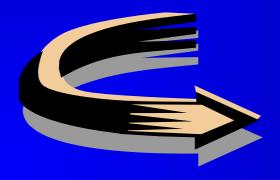
konstruktive Maßnahmen: Projekt 3

Höhenreduzierung durch konischen Übergang

Entkopplung der Felder durch Trennwände mit $|Zw| \rightarrow \infty$

Projekt 1: SAR: $\sigma \approx \pm 40\%$

Projekt 2: SAR: $\sigma \approx \pm 50\%$


Ausblick

Projekt 3:

Ausführliche numerische Berechnungen

für etwa 30 verschiedene Modelle

Modellierung unter Berücksichtigung real vorkommender Konfigurationen, Körperhaltungen und relativer Positionen der Mäuse zueinander.

Zuverlässige Statistik

