Age Dependent Effects of RF Electromagnetic Fields on the Base of Relevant Biological Parameters

Andreas Christ, Marie-Christine Gosselin, Manuel Murbach, Sven Kühn, Marcel Zefferer, Katharina Honegger, Sonja Negovetic, and Niels Kuster

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

© Foundation for Research on Information Technologies in Society

Contents

- objectives
- numerical models and methods
- age dependent parameter ranges
- computational results
- experimental setups and first results
- next steps

Objectives

- development of three high-resolution head models of children (3-11 years) and an adult with accurate segmentation of small brain regions (hypothalamus, hippocampus, bone marrow, etc.)
- simulation of the exposure of these brain regions exposed to different designs of mobile phones considering age dependent tissue parameters
- numerical assessment of the temperature increase during mobile phone exposure considering uncertainties of the thermal parameters and possible thermoregulatory effects
- experimental validation of the EM-energy absorption and temperature increase in adults and children using specially designed measurement protocols

Anatomical Models - Visible Human

- resegmentation of cryosection images of a 38 year old male (Visible Human)
- 2.5-D model (SEMCAD Compound format) retaining the original information of the images (discretization at arbitrary resolutions)

© Foundation for Research on Information Technologies in Society

Anatomical Models - 3 Year Old Child

- resegmentation of MRI images of a 3 year old child
- 2.5-D model (SEMCAD Compound format) retaining the original information of the images (discretization at arbitrary resolutions)

Children's Heads of the Virtual Family Project

- high resolution MRI scans high (0.5 x 0.5 x 1.0mm³ in the head
- manual segmentation supported by a software developed in house
- surface reconstruction (marching cube), surface smoothing (spring model), reduction of complexity (triangle collapse)
- 84 different tissue types (CAD objects)
- export of organs and tissues as watertight CAD parts in SAT format

Reconstructed Head of the Boy Model

Anatomical Models - 6 Year Old Boy

• 6 year old boy, 17kg, 1.07m, BMI 14.8

Anatomical Models - 11 Year Old Girl

• 11 year old girl, 43kg, 1.48m, BMI 15.5

Mobile Phone Models

generic phone monopole antenna generic phone dual band patch antenna Motorola TimePort T250 helical antenna

- generic phone with monopole antenna from FDA intercomparison [Beard et al., 2006]
- generic phone with integrated dual band antenna [IEEE 1528.1, 2008]
- CAD model of Motorola Time Port T250 with helical antenna, validated in [Chavannes et al., 2003]

© Foundation for Research on Information Technologies in Society

Validation of the Generic Phone Model

Free Space Input Impedance

manufactured generic phone

Measurement and Simulation Setup - Cheek Position

Measurement Setup

Numerical Model

© Foundation for Research on Information Technologies in Society

SAR Distribution at 835MHz

Hypothesis: Age Dependent Dielectric Parameters

 The differences in SAR due to age dependent changes of the dielectric parameters have a larger impact than anatomical variations.

EM Exposure Scenarios

- one adult and three child models with dielectric parameters from Cole-Cole model and age dependent parameters for all age/weight classes
- exposed to the two generic phone models and the Motorola T250
- touch and tilted positions according to [Kainz et al., 2005]
- evaluation of 10g SAR [IEEE C95.3] and av. SAR in brain with and without cerebellum and in brain subregions
- FDTD simulations with Semcad X, nonuniform meshes with step sizes between 0.5mm and 1.5mm in the heads
- approximately 200 different scenarios simulated

touch position

tilted position

Exposure of the Visible Human Head

- ratio of the 10g peak spatial av. SAR in the head and brain regions for age dependent parameters in comparison to the Cole-Cole model
- generic phone with monopole antenna, touch position

© Foundation for Research on Information Technologies in Society

Exposure of the 11 Year Old Girl

- ratio of the 10g peak spatial av. SAR in the head and brain regions for age dependent parameters in comparison to the Cole-Cole model
- generic phone with monopole antenna, touch position

Exposure of the 6 Year Old Boy

- ratio of the 10g peak spatial av. SAR in the head and brain regions for age dependent parameters in comparison to the Cole-Cole model
- generic phone with monopole antenna, touch position

Exposure of Brain Regions as Function of Head Size

 exposure of different inner brain regions at 900MHz, generic phone with integrated antenna, touch position normalized to 1W antenna power

Exposure of the Brain at 900MHz

Visible Human

3 Year Old Child

- SAR distribution at 900MHz in brain tissue (grey and white matter, cerebellum)
- cube location at maximum 1g Peak Spatial Average SAR

Exposure of the Brain at 1800MHz

Visible Human

3 Year Old Child

- SAR distribution at 1800MHz in brain tissue
- cube location at maximum 1g Peak Spatial Average SAR

Av. SAR Ratio of the Brain: Child vs. Adult

- SAR maximum located in cerebellum of children
- current density maximum of the phone in the center of the ground plane (900MHz) or at the antenna (1800MHz)
- strong increase of SAR in the brain of the 3 year old child because SAR maximum is directly located at current maximum

Thermal Simulations

 The assessment of the impact of the uncertainties of the thermal parameters and thermoregulatory effects is ongoing.

Experimental Validation

- temperature measurements in the auditory canal
- exposure protocol
- initial measurement results
- assessment of the pinna dimensions
- experimental phantom of a child head

Hypothesis: Temperature Rise in Adults and Children

- At exposure levels from mobile phones, possible differences in the induced temperature increase between adults and children are in the range of the probe sensitivity limit.
- Procedures providing improved sensitivity are required and are currently under investigation.

Exposure Setup for Temperature Measurements

Temperature Probes

- miniature thermal probe (NTC) with highly resistive lines
- measurement range: 0°C 60°C
- accuracy ΔT : ±0.01°C, dT/dt: ±2%, Noise ±0.1mK/s (10s ev. time)
- sensitivity (SAR): 0.2mW/kg
- time constant < 1s
- E-field interference: 0.6mK at 1000V/m on a length of 50mm (parallel E-field), no interference at perpendicular orientation of the E-vector

Exposure Protocol

- approval of the protocol by ethics committee of ETH Zürich
- 16 male adults (20-30 years old) and 16 children (6-10 years old)
- air conditioned room
- introductory talk, measurement of the ear dimensions and body temperature (infrared thermometer)
- mounting of the exposure setup (phones preheated to 37°C), adaptation phase of 30 minutes
- 4 exposure phases of 7.5 minutes:
 - generic phone (2W/kg) right side, sham left side
 - T250 (0.6W/kg) left side, sham right side
 - generic phone (2W/kg) right side, sham left side
 - T250 (0.6W/kg) left side, sham right side
- measurement of the ear temperature with an infrared thermometer

Temperature Rise in SAM at 10 W/kg av. Peak SAR

 SAM phantom filled with tissue simulating gel and equipped with temperature probes on the cheek and in the ear

Temperature Rise in Volunteers at 10W/kg

Gauge for the Measurement of the Ear Thickness

- supporting base of shape and size of a cell phone for natural positioning
- force gauge for control of contact pressure of the pinna
- std. dev. of repeated measurements generally better than 20%

Dosimetric Phantom of a Child's Head

- head phantom of a 3 year old child manufactured from the anatomical model using laser sintering
- surface thickness 2mm

Summary

- head models completed (improved geometrical resolution due to custom made segmentation software)
- SAR simulations completed (approx. 200 configurations x 10 evaluated endpoints)
- interpretation of these values in progress
- pilot temperature simulations show the expected differences to the experimental data (appropriate thermal tissue parameters under evaluation)
- experimental child head phantom close to completion
- in vivo measurement setup constructed and tested (optimization of setup and measurement protocol in progress)
- pinna thickness measurement gauge developed and tested
- ethics committee approval received (much more difficult than expected)
- recruitment of volunteers in progress

Next Steps

- statistical evaluation of SAR evaluations
- conclusion of temperature simulations considering experimental results
- experimental evaluation of child head phantom
- revision of pinna thickness of numerical child models and SAR evaluation
- completion of temperature measurements in adults and children